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Abstract. In this paper we present a new practical key-recovery attack
on the SFLASH signature scheme. SFLASH is a derivative of the older
C∗ encryption and signature scheme that was broken in 1995 by Patarin.
In SFLASH, the public key is truncated, and this simple countermeasure
prevents Patarin’s attack. The scheme is well-known for having been
considered secure and selected in 2004 by the NESSIE project of the
European Union to be standardized.
However, SFLASH was practically broken in 2007 by Dubois, Fouque,
Stern and Shamir. Their attack breaks the original (and most relevant)
parameters, but does not apply when more than half of the public key
is truncated. It is therefore possible to choose parameters such that
SFLASH is not broken by the existing attacks, although it is less ef-
ficient.
We show a key-recovery attack that breaks the full range of parameters
in practice, as soon as the information-theoretically required amount of
information is available from the public-key. The attack uses new crypt-
analytic tools, most notably pencils of matrices and quadratic forms.

1 Introduction

Multivariate cryptography is a brand that encompasses the (mostly public-key)
cryptographic schemes whose security relies on the difficulty of solving systems
of multivariate polynomial equations over a finite field. Even when restricted
to quadratic polynomials, and to the smallest possible finite field, the problem
is well-known to be NP-complete, not to mention very difficult in practice. In
that restricted setting, the problem is often called Multivariate Quadratic (MQ
for short). Because this mathematical problem is well-known and has a simple
statement, it was very tempting to design cryptographic schemes relying on its
hardness. This has the added benefit that no quantum algorithm is known to
break MQ faster than in the classical world, unlike most number-theoretic hard
problem that would fall to Shor’s algorithm [16].

Multivariate polynomials have been used in cryptography as early as in 1984,
mostly with the purpose of designing RSA variants with faster decryption [11,



12, 5]. At about the same time, Matsumoto and Imai designed the first public-
key scheme explicitly based on the hardness of MQ. In fact, they had several
proposal, but only a single one (their “Scheme A”) made it to the general crypto
community, and was presented at Eurocrypt’88 [10] under the name C∗. It is very
similar to RSA, as its only non-linear component is a power function over a finite
field. However, unlike RSA this power function is an easy-to-invert bijection,
therefore in C∗ it is composed with two secret invertible linear maps that destroy
its algebraic structure. We therefore see C∗ as an attempt to obfuscate a power
function in Fqn by presenting it as a collection of n quadratic polynomials in n
variables over Fq.

Several years later, Patarin found a devastating attack against C∗, allowing
to decrypt and to forge signatures in a few seconds [13]. He showed that there
always are bilinear relations between the ciphertext and the plaintext, which
can be easily discovered by the adversary. This allows for an efficient attack by
substituting the ciphertext into the bilinear relations, which results in a system
of linear equations whose solution is the plaintext.

The SFLASH signature scheme [14] is a derivative of the original C∗ that
was proposed in 2001 by Courtois, Goubin and Patarin. It is famous for having
been selected in 2003 by the NESSIE European project to be proposed to the
standardization bodies.

The idea behind SFLASH is to take the original C∗ but to throw away a part
of the output. The resulting trapdoor one-way function can no longer be used for
encryption, but it can still be used for signatures. This is achieved by removing
a part of the public key, which is the obfuscated description of the power func-
tion. The idea of removing some of the public polynomials has been originally
suggested by Shamir [15], and was called the “Minus transform”. The original C∗

with the minus transform is thus often called C∗−. This countermeasure is very
effective since it avoids the reconstruction of the bilinear relations and makes it
much harder to compute Gröbner basis of the public key.

SFLASH has in turn been very badly broken in 2007 when Dubois, Fouque,
Stern and Shamir found a practical forgery attack [4, 3], and further broken
in 2008 when Fouque, Macario-Rat and Stern found a practical key-recovery
attack [6]. Both attacks are very practical, defeating the actual SFLASH param-
eters in minutes. They are essentially polynomial in the security parameter(s), so
that there is no hope that increasing them may make the scheme simultaneously
secure and usable.

However, both attacks only apply as long as the number of removed polyno-
mials is less than half of the total number. There are therefore unbroken ranges
of parameters, even though they are less practical than the original (defeated)
proposal. For instance, let us consider the parameters q = 128 and n = 257. The
original C∗ public key would be made of 257 polynomial in 257 variables over
F128. If we throw away 75% of the public key, we obtain a C∗− public-key with 64
multivariate quadratic polynomials in 257 variables, and the existing attacks do
no apply. The signatures are 1799-bit long, and the public-key is 1.8Mbyte long.



Forging a signature by exhaustive search requires 2448 trials, and computing a
Gröbner basis should require even more arithmetic operations.

Our Contribution. We show that SFLASH/C∗− can be broken regardless of
the fraction of the public that was thrown away, thus improving on the previ-
ous attacks. We present a practical key-only attack that recovers the secret-key
and applies as soon as three polynomials from the public key are available. This
happens to be the information-theoretic minimum quantity of data required to
uniquely characterize the set of possible secret keys. The attack has been im-
plemented and tested. It runs very efficiently, and breaks in practice all the
meaningful ranges of parameters. For instance, the particular parameters men-
tioned in the previous paragraph can be broken in about 10 hours using a single
computer.

SFLASH had already been thrown out of the league of possible alternatives
to RSA of discrete-logarithm based schemes by the previous attacks. The contri-
bution of this work is not only to further break SFLASH, but also to introduce
new cryptanalytic techniques. To achieve our results, we make use of mathemat-
ical tools that were not previously used in multivariate cryptanalysis, such as
pencils of matrices or quadratic forms, adjugate matrices, simultaneous diago-
nalization of quadratic forms, kernels of quadratic forms, etc. We expect that
some of these tools might apply further to other schemes, in particular those
sharing some features with SFLASH, notably HFE.

1.1 Organization of the paper

In section 2, we present some mathematical background. Then, in section 3, we
describe the C∗ and SFLASH signature schemes. In section 4, we investigate
in great detail the mathematical properties of C∗ and find exploitable relations
between the secret and public keys. Finally, we expose our key-recovery attack
in section 5, and give experimental results.

2 Mathematical Background

Finite Fields. Let K the finite field with q elements, where q is a power of
two, and F an extension of K of degree n. Recall that F is isomorphic to Kn, so
that we often identify the two spaces. The trace on F over K is the K-linear map
defined by TrF/K(x) = x + xq + . . . + xq

n−1

. The norm on F over K is defined

by NF/K(x) = x · xq . . . · xqn−1

. Both TrF/K and NF/K are functions from F to
K, and we simply denote them Tr and N since there is no confusion. The map
x 7→ xq is called the Frobenius map, and it is a field automorphism.

Lemma 1. For any K-linear mapping L on F over K, there exists an element
λ of F such that, for all x in F, L(x) = Tr(λx). Moreover, if Tr(λx) = 0 for
all x ∈ F, then λ = 0.



Quadratic forms. A quadratic form over K is a degree 2 homogeneous poly-
nomial:

Q(x1, . . . , xn) =
∑

1≤i≤j≤n

aij · xixj with aij ∈ K.

It is well-known that over fields of characteristic not two, a quadratic form Q
is uniquely represented by its polar form, i.e., the symmetric bilinear form defined
by ψ(Q) : (x, y) 7→ 1/2 · (Q(x+ y)−Q(x)−Q(y)), with the nice property that
Q(x) = ψ(Q)(x, x). Over fields of characteristic two, this is however no longer
possible, because the division by two is not defined. In this paper, we will slightly
abuse the usual definition, and we define the polar form of a quadratic form to
be the symmetric bilinear form:

ψ(Q) : (x, y) 7→ Q(x+ y)−Q(x)−Q(y)

Given a basis b1, . . . , bn of F, ψ(Q) can be represented by a n × n symmetric
matrix whose (i, j) coefficient is ψ(Q) (bi, bj). By an abuse of notation, we will
often identify ψ(Q) with its matrix representation.

The Kernel of a Quadratic Form. The kernel of a quadratic form Q, also
called the radical of Q is the vector space of elements a ∈ F such that for
any x ∈ F, ψ(Q)(x, a) = 0. It is easy to see that the kernel of a quadratic form
is the kernel of the matrix ψ(Q). What makes the kernel interesting is that in
characteristic two, when n is odd, all quadratic forms have a non-trivial kernel.

Theorem 1 ([1]). Let q be a power of two, and let Q be a quadratic form over K.
Then the rank of ψ(Q) is even.

Linear Algebra. We denote the characteristic polynomial of M by χ (M). A
minor of M is simply the determinant of a submatrix of M . We will use in the
following the adjugate matrix adj(M) of a matrix M . We recall that it is the
transpose of the comatrix, which is the matrix of the cofactors. A cofactor of

M , cofi,j(M) is the determinant of the submatrix M j

i
, where in this notation we

refer to the matrix M without the ith row and the jth column. We lastly recall
two well-known results connecting a matrix M and its adjugate.

Theorem 2 (Cayley-Hamilton). If χ (M) = Xn+cn−1X
n−1 + · · ·+c1X+c0

is the characteristic polynomial of M , then:

Mn + cn−1M
n−1 + · · ·+ c1M + c0 · In = 0

Mn−1 + cn−1M
n−2 + · · ·+ c2M + c1 · In = adj(−M)

It follows that −M · adj(−M) = adj(−M) · −M = det(−M) · In

Lemma 2. The rank of adj(M) can be deduced from the rank of M :

– if rank(M) = n, then rank(adj(M)) = n.
– if rank(M) = n− 1, rank(adj(M)) = 1.
– In all other cases, rank(adj(M)) = 0.



3 The C∗ and SFLASH Signature Schemes

The basic idea underlying both C∗ and SFLASH is to hide an easily invertible
function φ in the large finite field F using two secret invertible linear (or affine)
maps S and T which mix together the n coordinates of φ over the small field K,
with PK = T ◦ φ ◦ S. The signature of a message y is a vector x such that
PK(x) = y. The legitimate signer easily computes x by successively inverting
T, φ and then S.

Let π be the canonical isomorphism between Kn and F, and let φ be defined

by φ(X) = X1+qθ . Enforcing that gcd(1 + qθ, qn − 1) = 1 makes φ bijective.

Because we may write φ(X) = X ·Xqθ , we find that φ is in fact the product of
two linear functions (recall that the Frobenius map and its iterates are linear).
It follows that π ◦φ◦π−1 is a quadratic bijection of Kn, i.e., that if x ∈ Kn, then
π ◦ φ ◦ π−1 is a vector whose coordinates are quadratic forms in the coordinates
of x. For the sake of lighter notations, we omit π in the sequel.

The secret key of the scheme is composed by the two invertible n×n matrices
S and T with coefficients in K. The exponent θ and π are public parameters. The
public-key of the scheme is formed by the representation over Kn of T ◦ φ ◦ S.
More precisely, if Ti denotes the i-th line of T , then the public key of C∗ is the
vector of n quadratic forms over Kn:

Pi (x1, . . . , xn) = Tr
(
Ti · φ (S (x1, . . . , xn))

)
1 ≤ i ≤ n

The public key of SFLASH is composed of the first r quadratic forms P1, . . . ,Pr.
Typical values of the parameter may be the ones defined for SFLASH V3:
q = 128, n = 67, r = 56 and θ = 33.

Although the public key is a vector of polynomials in (K[x1, . . . , xn])n, it is
more convenient to see them as functions from F to K. We therefore write

Pi(x) = Tr
(
Ti · S(x)1+q

θ
)
.

Equivalent Secret Keys. Given a public-key, there are many possible cor-
responding secret keys (there are “equivalent” secret keys [18]). A key-recovery
attack is expected to retrieve one possible secret key amongst those generating
the targeted public-key. The existence of many equivalent secret keys gives some
freedom to the attacker: we may be guaranteed that there is an equivalent secret
key satisfying some interesting property.

Lemma 3. If (S, T ) is an SFLASH secret-key that generates the public key PK,
then for any integer k > 1 there is an equivalent secret key (S′, T ′) in which

T ′i = (Ti/T1)q
k

(seeing the vectors Ti as elements of F).

Proof. Because the function x ∈ F 7→ a · x is linear over F, it can be represented
by a matrix Ma over Kn. The key idea is that multiplications “commute” with
the internal power function:

Pi (x) = Tr

(
Ti

a1+qθ
· [a× (S · x)]1+q

θ

)



Now, we pick a such that a1+q
θ

= T1 (this is always possible because the power
function is bijective). Thus, a possible equivalent secret key is such that T ′i =
Ti/T1, and S′ = Ma · S.

Next, it follows from the definition of the trace, and from the identity xq
n

= x

which holds over F that Tr
(
xq

k
)

= Tr(x). This shows that

Pi (x) = Tr

((
Ti

a1+qθ

)qk
·
(

[(a× (S · x)]
qk
)1+qθ)

Thus, if F denotes the matrix representing the Frobenius, i.e., the linear map

x 7→ xq in F, then a possible equivalent secret key is such that T ′i = (Ti/T1)q
k

,
and S′ = F k ·Ma · S. ut

4 Mathematical Properties of C∗− Public Keys

The aim of this section is to exhibit relations involving the secret elements S
and the Ti’s on the one hand, and the public key on the other hand, in such a
way that the secrets can be easily reconstructed given only a small number of
public polynomials.

For this purpose, we consider two public polynomials Pi and Pj , and we
define the pencil of quadratic forms P = λPi + µPj , with λ, µ in K. We also
define the pencil of vectors T = λTi + µTj , and because the Trace is K-linear we
have:

P(X) = Tr
(
T · S(X)1+q

θ
)
. (1)

We are interested in the kernel of P, which is by definition the set of vectors a
such that for any x, ψ(P)(a, x) = 0. In fact, it is simply the kernel of the matrix
representation of the polar form ψ(P). We first relate the kernel of P to the
components of the secret key in section 4.1, and then with the components of
the public-key in section 4.2. This allows us, by “transitivity”, to find exploitable
relations between the public key and the secret elements in section 4.3.

In the sequel, we adopt the typographic convention that any quantity that
depends implicitly on λ and µ is written in bold.

4.1 Relations Between the Kernel and the Secret-Key

It is not very surprising that the kernel of P admits a relatively simple expression
in terms of the components of the secret key.

Theorem 3. Given that n is odd, and gcd(θ, n) = 1, we have:

(i) The kernel of P is
{
x ∈ Kn | T · S(x)1+q

θ ∈ K
}

.

(ii) The matrix pencil ψ(P) has rank n− 1.
(iii) When (λ, µ) 6= (0, 0), there exists a unique vector a ∈ Kn in the kernel of

P such that P(a) = 1.



(iv) There exists δ ∈ N such that a = S−1
(
Tδ
)
. A possible value for δ is

δ =
(q

2
− 1
)
·
n−1∑
i=0

qi +

n−1∑
i=(n+1)/2

q2iθ (2)

Proof. It is known that the polar forms of C∗ polynomials have a special shape:

ψ(P)(x, y) = Tr
(
T ·
[
S(x) · S(y)q

θ

+ S(x)q
θ

· S(y)
])

After some manipulations, by exploiting the linearity of the Frobenius, of the
Trace, and the fact that they commute, we find when x 6= 0:

ψ(P)(x, y) = Tr

([
T · S(x)1+q

θ

+
(
T · S(x)1+q

θ
)qθ]

·
(
S(y)

S(x)

)qθ)
Now, inside the trace, the first term of the product depends only on x, and the
second member takes all possible values in F when y ranges across F, because S
and the Frobenius are bijective. Lemma 1 then tells us that if x 6= 0 belongs to
the kernel of P, then

T · S(w)1+q
θ

+
(
T · S(w)1+q

θ
)qθ

= 0

It remains to show that the solutions of the equation X + Xqθ = 0 in F are
precisely the elements of K. It is easy to check that any x ∈ K is a solution,
because the fields are of characteristic two, which makes the equation equivalent

to X = Xqθ . The other direction is not much more difficult: by induction we

find that X = Xqiθ for any i ∈ N. Since over F we always have x = xq
n

, then
when iθ is congruent to 1 modulo n, the equation implies X + Xq = 0, which
shows that the solutions all lies in K. This establishes point (i).

Let us prove point (ii). The polar form ψ(P) cannot be of rank n, because
it is a skew-symmetric matrix and n is odd (this is well-known for matrices over
fields, and is extended to the case of matrices multivariate polynomial rings in
lemma 8, appendix A). Now, we show that the rank of ψ(P) is greater than n−1.
If we specialize (λ, µ) to any value in K2 distinct from (0, 0), then by point (i)
ψ(λPi + µPj), seen as a matrix with entries in K, has a kernel of dimension 1.
By the rank theorem (over K), its rank is then n − 1. This shows that there is
a non-zero minor of dimension (n − 1). This minor (seen as a polynomial in λ
and µ) cannot be the zero polynomial, otherwise it could become non-zero for
a particular choice of λ and µ in K, hence the rank of ψ(P) (seen as a matrix
with entries in K[λ, µ] has rank exactly n− 1.

Point (iii) follows immediately from (i) and from the fact S, T and the power
function are bijective. To establish point (iv), we need to find a suitable value

δ such that S (a) = Tδ. By definition of a, we should have
(
Tδ
)1+qθ ·T = 1, so

that δ satisfies the equation 1 + δ(1 + qθ) = 0 modulo (qn − 1). Checking that
the given value of δ is valid is technical and not very interesting, and we refer
the reader to [8] for more details. ut



The fourth point of theorem 3 makes it possible to explicitly write down the
expression of a, the kernel vector introduced in the proposition, as a function of
λ and µ. Let us set d = (n− 1)/2, and let us introduce PN , PS ∈ F[λ, µ]:

pN = N(T) =

n−1∏
i=0

(
λ · T1q

i

+ µ · T2q
i
)

pS = S−1

 n−1∏
i=(n+1)/2

(
λ · T1q

2iθ

+ µ · T2q
2iθ
) (3)

The idea is that pN only depends on T , while pS depends “linearly” on S. It is
fairly obvious that pN has total degree n while pS has total degree d. Next, we
claim that pN in fact has coefficients in K. A possible way to see this is that
because it coincides with the Norm, it takes values in K when λ, µ ∈ K, and
therefore it could be interpolated as a polynomial of K[λ, µ].

We have carefully chosen pN and pS so that the vector a defined in point (iii)
of proposition 3 is such that:

a = (pN )q/2−1 · pS .

This fact is an easy consequence of the fourth point of proposition 3. Note that
because pN has values in K, then pS(λ, µ) spans the kernel of P, but unlike a, pS
does not a priori satisfy the additional condition that P(pS) = 1. It follows, by
definition of a, because P(λx) = λ2P(x) when λ ∈ K and because x−1 = xq−2

in K, that:

P
(

(pN )q/2−1 · pS
)

=
P (pS)

pN
= 1

And we find that pN = P(pS). The two polynomials pN and pS play a crucial
role in the sequel: we will show in section 5 that knowing them is sufficient
to reconstruct the secret key in polynomial time. In addition, we will also show
that they can be reconstructed in polynomial time from the public-key. However,
doing this requires some more mathematical machinery.

4.2 Relations Between the Kernel and the Public Key

The kernel of P can be computed using only publicly available information, since
it only depends on the public polynomials. If the values of λ and µ were fixed,
this could be achieved with standard linear algebra. More sophisticated computer
algebra systems have functions that compute a basis of the kernel in terms of λ
and µ. We remove the need for such sophisticated operations by explicitly giving
the form of the kernel.

Theorem 4. Let P be a pencil of two public polynomials, B = {b1, . . . , bn} a
basis of Kn. There exists a vector k = (k1, . . . ,kn) of degree-d homogeneous
bivariate polynomials in K[λ, µ], such that:



i) The adjugate matrix of the polar form of P can be expressed as the tensor
product of k with itself:

adj (ψ(P)) = (ki · kj)1≤i,j≤n

ii) the kernel of ψ(P) is spanned by

n∑
i=1

ki · bi

Proof. According to theorem 3, item (ii), the matrix pencil ψ(P) is of rank n−1,
and lemma 2 states that in this case adj(ψ(P)) has rank 1. We will now show
that adj(ψ(P)) is the square of some other matrix, but we first require a technical
lemma.

Lemma 4. Let P be an arbitrary pencil of quadratic forms. There exists a family
of bivariate polynomials p0, . . . ,pd ∈ K[λ, µ] such that pi is homogeneous of
degree i, and the characteristic polynomial of the polar form of P is:

χ (ψ (P)) =

d∑
i=0

pi
2 ·Xn−2i.

The proof of lemma 4 is postponed to appendix A. It follows from lemma 4
and theorem 2 that:

adj(ψ(P)) =

d∑
i=0

pi
2 · ψ(P)2d−2i =

(
d∑
i=0

pi · ψ(P)d−i

)2

.

We denote by R the natural square-root of adj(ψ(P)) occurring on the right-hand
side. It is a symmetric matrix pencil whose coefficients are bivariate polynomials
of degree d in λ and µ. Let us consider the i-th diagonal term of adj(ψ(P)). We
find:

adj(ψ(P))i,i =

n∑
j=1

Ri,j ·Rj,i =

 n∑
j=1

Ri,j

2

.

Consequently, let us define ki =
∑n
j=1Ri,j . The previous equation tells us

that adj(ψ(P))i,i = ki
2 for all 1 ≤ i ≤ n. This establishes point (i) for the

diagonal of adj(ψ(P)) only.
Let us now consider the other terms with i 6= j. Since adj(ψ(P)) is of rank

1, we know that all the minors of dimension 2 of adj(ψ(P)) obtained by keeping
only the i-th row and the j-th column is null. This yields:

adj(ψ(P))i,i · adj(ψ(P))j,j + (adj(ψ(P))i,j)
2

= 0

and consequently adj(ψ(P))i,j = ki·kj (when the field is of characteristic two, the
square root always exists and is unique because the Frobenius map is bijective).
This completes the proof of (i).



Let us now focus on point (ii). One of the ki’s at least is non-zero, be-
cause adj(ψ(P)) is not the null matrix. We therefore assume (without loss of
generality) that k1 is non-zero, and we consider the matrix relation given by
theorem 2:

ψ(P) · adj(ψ(P)) = 0.

Looking at the first column of the product, we conclude that

ψ(P) ·

(
n∑
i=1

k1ki · bi

)
= 0,

and because k1 is non-zero, we conclude that ψ(P) · (
∑n
i=1 ki · bi) = 0. ut

In light of theorem 4, it seems that we can derive from the public key a
polynomial whose properties mimic those of pS . Keeping the notations of the
theorem, we define:

p̃S =

n∑
i=1

ki · bi, p̃N = P (p̃S)

We deduce from theorem 4 that p̃S has the same degree as pS , and that like pS ,
it spans the kernel of ψ(P). We also need to find a polynomial p̃N that would
be an analogous of pN and that could be derived from the public key. Note that
it immediately follows from theorem 4 that p̃S spans the kernel of P.

4.3 Relations Between the Secret-Key and the Public-Key

The last (but not least) step of our analysis is to show that the two polyno-
mials pN , pS derived from the secret key in section 4.1 on the one hand, and
the polynomials p̃N , p̃S derived from the public key in section 4.2 are in general
equal up to a constant multiplicative factor.

Theorem 5. If T2/T1 is primitive over F (i.e., generates the multiplicative
group of F), then there exists a constant ζ 6= 0 in K such that p̃S = ζ · pS,
and (accordingly) p̃N = ζ2 · pN .

Proof. The first step of the proof is to show that p̃N has degree n, just like pN .
The polynomials k1, . . . ,kn defined in theorem 4 have coefficients in K, and are
homogeneous of degree d. We can therefore find a family c0, . . . , cd of coefficients
in F such that:

p̃S =

n∑
i=1

ki · bi =

d∑
i=0

ci · λd−iµi. (4)

It turns out that this family enjoys a nice property: over the subspace of Kn
that it spans, the pencil P is in fact a diagonal form (i.e., the two public poly-
nomial it is made of are simultaneously diagonal).

Lemma 5. ψ(P)(ci, cj) = 0 for any 0 ≤ i, j ≤ d.



Lemma 6. For any family {ri}0≤i≤d of polynomials over K, we have

P

(
d∑
i=0

ri · ci

)
=

d∑
i=0

r2i ·P(ci).

The proofs are postponed to appendix B. Applying lemma 6 to (4), we get:

p̃N = P (p̃S) = P

(
d∑
i=0

ci · λd−iµi
)

=

d∑
i=0

(
λP1(ci) + µP2(ci)

)
· λ2d−2iµ2i

From there, it is easy to see that p̃N has degree 2d+ 1 = n.

Now that it has been established that pN and p̃N have the same degree, we
will use irreducibility properties of pN to conclude the proof of theorem 5. We
first claim that the univariate polynomial pN (λ, 1) ∈ K[λ] is irreducible over K.
After a few manipulations we find

pN (λ, 1) = N(λT1 + T2) = N(T1) ·N(λ+ T2/T1).

Thus T2/T1, which is primitive over F, is a root of pN (λ, 1), and this polynomial
is therefore irreducible over K.

Lemma 7. There exist ζ, ζ̃ in K[λ, µ] such that:

ζ · pS = ζ̃ · p̃S and gcd
(
ζ, ζ̃
)

= 1.

Proof. First, the rank of the two-column matrix (pS , p̃S) is one. If it was two,
then this matrix could be extended to a n×n matrix M of rank n. We then find
that the rank of ψ(P) ·M would be at most n − 2, since its two first columns
are null, which contradicts the fact established earlier that ψ(P) has rank n− 1.

There exist polynomials {`i} such that pS =
∑n
i=1 `i · bi. We now argue that

there exists an index i0 such that ki0 6= 0 and `i0 6= 0. The reasoning is by
contradiction: assume that for all i we have ki · `i = 0. Since p̃S 6= 0 and pS 6= 0,
there exist indices i, j such that ki 6= 0 and `j 6= 0. By hypothesis, kj = 0 and
`i = 0. But then, we find that ki · `j +kj · `i = ki · `j 6= 0. Consequently, a minor
of dimension two of (pS , p̃S) is non-zero, which contradict the fact that it is of
rank one.

We can therefore assume without loss of generality that k1 6= 0 and `1 6= 0.
The linear combination k1 · pS + `1 · p̃S is null since by construction its first
coordinate is zero, and the other coordinates are minors of dimension 2 of (pS , p̃S)
and are also null. We can now assert that the pair(

k1

gcd (k1, `1)
,

`1
gcd (k1, `1)

)
satisfies the requirements of the lemma. ut



Let
(
ζ, ζ̃
)

a pair of bivariate polynomials over K satisfying lemma 7. By

applying P, we get: ζ2 · pN = ζ̃2 · p̃N . Any irreducible factor of ζ̃ must divide
pN since it does not divide ζ. But because pN is irreducible, ζ̃ is necessarily of
degree 0. And ζ is also degree 0 because pN and p̃N have the same degree. This
concludes the proof of theorem 5. ut

We conclude this section by giving one last important but somewhat technical
result. The polynomial pS is “designed” to reveal the image of S on the subspace
of Kn spanned by its d+ 1 coefficients (seen as vectors of Kn). It does actually
matter whether these are linearly independent or not.

Theorem 6. The coefficients of the polynomials pS form an independent family

if and only if (T2/T1)q
θ

is not a root of the polynomials x+xq
2iθ

for 1 ≤ i ≤ d. In
particular, if n is a prime number this condition is satisfied since by assumption
T1 and T2 are independent.

The proof is given in appendix C.

5 The Attack

We are now ready to leverage our in-depth investigation of the properties of C∗,
by presenting a practical key-recovery attack that does not require any signature.
The global attack strategy is to compute the polynomials p̃N and p̃S defined in
section 4.2. Then, theorem 5 tells us that with non-negligible probability, these
are equal to the polynomials pN and pS defined in section 4.1, from which the
secret-key can be efficiently recovered.

Reconstructing the Polynomials pN and pS. Given a pencil P = λPi+µPj
of polynomials from the public key, we first show how the polynomials p̃N and p̃S
defined in section 4.2 can be determined. More precisely, we show how to build
a function Kernel-Recovery(P) that returns the two polynomials pN and pS
described in section 4.1. Because pN = P(pS), we focus our attention on the non-
obvious part consisting in recovering pS . This can be achieved in two different
ways. A first possibility is to follow the proof of theorem 4, which results in the
following procedure:

1. Compute the characteristic polynomial ζ of ψ(P) and factor it into

ζ = X ·

(
d∑
i=0

pi
2 ·Xd−i

)2

2. Compute the matrix R =
∑d
i=0 pi · ψ(P)d−i and let ki =

∑n
j=1 Ri,j .

3. Finally let pS be equal to
∑n
i=1 ki · bi



Note that computing the characteristic polynomial can be achieved over any com-
mutative ring using the division-free algorithm of Mahajan and Vinay [9]. Com-
puting the factorization of the characteristic polynomial is a (classical) multivari-
ate factorization problem. Both functionality are available in several computer
algebra systems, including (but not limited to) MAGMA [2] and SAGE [17].

Alternatively, we may directly compute a basis of kerψ(P) (which is a module
over K[λ, µ]) using the ad hoc function present in some computer algebra systems.
This function is for instance available in MAGMA, and seems to rely on Gröbner
basis computations. It is apparently much faster than the previous option.

From Kernel to Secret-Key. Let us call (T ′, S′) the equivalent key we try
to forge. Thanks to lemma 3, we know that we may without loss of generality
assume that T ′1 = 1 and T ′2 = (T2/T1)q

i

, for any i > 0. This shows that if
(pN , pS) = Kernel-Recovery(λP1 + µP2), then we may safely choose T ′2 to
be any root of pN (λ, 1) different from one. We then focus on equation (3):

pS = S−1

 n−1∏
i=(n+1)/2

(
λ · T1q

2iθ

+ µ · T2q
2iθ
)

Given the values of T ′1 and T ′2, we may explicitly evaluate the product on the
right-hand side. Identifying both sides coefficient-wise then reveals the image
of S′ on the subspace of Kn spanned by the d + 1 coefficients of the product.
Theorem 6 tells us that this subspace is of dimension d + 1 with non-negligible
probability.

To complete the key-recovery of the secret element, we use a third polynomial
from the public-key. We compute (p′N , p

′
S) = Kernel-Recovery(λP1 + µP3).

Only one of the roots of p′N yields a valid choice for T ′3, therefore we pick one
at random, and we will try again with another one in case of failure in the
subsequent steps. Knowledge of T ′1 and T ′3 allows to discover the image of S′ on
another subspace spanned by d+ 1 generators following the same procedure.

At this point, we have learned the image of S′ on n + 1 vectors, and we
really hope that S′ is completely revealed. If it is not the case, we may try again
with P4 instead of P3. Once S′ is known, finding the other Ti’s can be done by
straightforward linear algebra. If no solution exists for any of them, then our
guess for T ′3 was wrong.

5.1 Complexity

We implemented the whole key-recovery using the MAGMA computer algebra
system. The code of the full attack is 120 lines long, and is available on the
web page of the first author. We first applied the attack to SFLASH v2 and
SFLASH v3, that were already broken (universal forgery) by Dubois, Fouque,
Stern and Shamir [3], and further broken (key-recovery) by Fouque, Macario-Rat
and Stern [6]. We then applied the attack to SFLASH instances that cannot be
broken by the existing attack, because the number of polynomials in the public



key is less than n/2. We tried various combinations of field size and variable
numbers, and found out that the attack works quite well in practice, as Table 1
shows. There are thus no longer any practically unbroken set of parameters for
SFLASH.

SFLASH
q n

#public Signature Already Attack KeyGen
version polynomials size broken ? time time

v2 128 37 26 (70%) 259 bits [3, 6] 7s 0.1s
v3 128 67 56 (83%) 469 bits [3, 6] 47s 0.6s

256 131 56 (42%) 1048 bits No 17min 5s
65536 257 64 (25%) 4112 bits No ≈ 10h 141s

2 331 80 (24%) 331 bits No 105min 16s
2 521 80 (24%) 521 bits No ≈ 11h 62s
2 1031 128 (12%) 1031 bits No ... 680s

Table 1. Experimental results
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8. Macario-Rat, G.: Cryptanalyse de schémas multivariés et résolution du problème
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A Mathematical Results

Lemma 8. Let P = λA + µB be a matrix pencil over K, symmetric and with
null diagonal, of any dimension n. Its determinant is a bivariate form of degree
n. If n is odd, det(M) = 0, and if n is even, there exists a bivariate form k over
K of degree n/2 such that det(M) = k2.

Proof. We will prove this result using a recurrence in a 2 by 2 step. For n = 1,

M = (0) and det(M) = 0. For n = 2, we have M =

(
0 k
k 0

)
, where k is a bivari-

ate form of degree 1 and det(M) = k2. Now, let n ≥ 3 and assume the property
is true for n−2. We will show that it is also true for n. We compute the determi-
nant of M by developing according to the first column. Since the (1, 1)-coefficient

of M is null, we have det(M) =
∑n
i=2Mi,1 det(M1

i
), where Mi,1 denote the co-

efficient (i, 1) of M and det(M1
i

) the (1, i) minor. We can see that in all these
minors, the first row has never been removed and always the first column. We can
now do a development according to the first row and using the multi-linearity of

the determinant, we get det(M) =
∑n
i=2

∑n
j=2Mi,1M1,j det(M1,j

1,i
), where M1,j

1,i

denote the matrix M by removing the rows 1 and i and the columns 1 and j.
Since M is symmetric, we can add together the terms (i, j) and (j, i) for i 6= j
and these terms vanish. The determinant that we compute is equal to det(M) =∑n
i=2M

2
i,1 det(M1,i

1,i
). Now we can use the recurrence assumption and if n is odd,

det(M) = 0 and if n is even, det(M) =
∑n
i=2M

2
i,1k

2
i = (

∑n
i=2Mi,1ki)

2, where
the forms ki, for i = 2, . . . , n are of degree (n − 2)/2. Consequently, the degree
of the form

∑n
i=2Mi,1ki is n/2. ut



Lemma 9. Let Pλ,µ be an arbitrary pencil of quadratic forms. There exist a
family of bivariate polynomials {pi}0≤i≤d in K[x, y] such that pi is of degree i,
and the characteristic polynomial of the polar form of P is:

χ (ψ (Pλ,µ)) =

d∑
i=0

pi
2 ·Xn−2i.

Proof. The result follows from lemma 8. The coefficient of Xn−i in χ (ψ (Pλ,µ))
is the sum of all M minors obtained by choosing n − i diagonal terms and
removing the (n− i) corresponding rows and columns. The minors obtained are
of dimension i. ut

B Simultaneous Diagonalization of two Quadratic Forms

Lemma 10. ψ(P)(ci, cj) = 0 for 0 ≤ i, j ≤ d.

Proof. Let (λ, µ) and (λ′, µ′) two pairs of variables in K2 such that λµ′ + λ′µ 6=
0. Because p̃S(λ, µ) and p̃S(λ′, µ′) are the kernels of λψ (P1) + µψ (P2) and
λ′ψ (P1) + µ′ψ (P2) respectively, we find:

(λψ (P1) + µψ (P2))(p̃S(λ, µ), p̃S(λ′, µ′)) = 0

(λ′ψ (P1) + µ′ψ (P2))(p̃S(λ, µ), p̃S(λ′, µ′)) = 0

By linear combination, we have

(λµ′ + λ′µ)ψ (P1) (p̃S(λ, µ), p̃S(λ′, µ′)) = 0

(λµ′ + λ′µ)ψ (P2) (p̃S(λ, µ), p̃S(λ′, µ′)) = 0

and since (λµ′ + λ′µ) 6= 0,

ψ (P1) (p̃S(λ, µ), p̃S(λ′, µ′)) = 0

ψ (P2) (p̃S(λ, µ), p̃S(λ′, µ′)) = 0.

Finally, thanks to the linearity of ψ (P1) and ψ (P2), we get:

d∑
i=0

d∑
j=0

ψ (P1) (ci, cj) · λd−iµiλ′
d−j

µ′
j

= 0

d∑
i=0

d∑
j=0

ψ (P2) (ci, cj) · λd−iµiλ′
d−j

µ′
j

= 0.ut

Lemma 11. For any family {ri}0≤i≤d of polynomials over K, we have:

P

(
d∑
i=0

ri · ci

)
=

d∑
i=0

ri
2 ·P(ci).



Proof. We will prove it by induction on the number of non null polynomials in
the family. We have P (r1 · c1) = r1

2 · P (c1) since P is a (pencil of) quadratic
form(s) whose coefficients are bivariate polynomials over K. Let us assume that
the result holds for k − 1 polynomials. According to the definition of the polar
form, we can write:

P

 k∑
j=1

rj · cj

 =

P(r1c1) + P

 k∑
j=2

rj · cj

+ ψ(P)

r1 · c1, k∑
j=2

rj · cj

 =

r1
2 · P (c1) +

k∑
j=2

rj
2 ·P(cj) +

k∑
j=2

r1 · cj · ψ(P)(c1, cj).

And lemma 10 allows to conclude.

C Showing Independence of the Coefficients of a
Polynomial

We concentrate on a simpler polynomial of the form
∏d−1
i=0 (x+ tq

i

).

Definition 1. Let d ≥ 1 a positive integer. We call elementary symmetric poly-
nomials of order d, the d+ 1 polynomials with d variables σi,d, 0 ≤ i ≤ d defined
implicitly by:

d∏
i=1

(X +Xi) =

d∑
i=0

σi,d(X1, . . . , Xd)X
d−i.

We also recall the following lemma useful to prove that a family of elements
in F is independent [7].

Lemma 12. Let A = {αi}0≤i≤d a family of elements of F. The elements in A

are independent if and only if the determinant of the matrix (αq
j

i )0≤i,j≤d is non
null.

Let t an element of F. In a first step we try to find an equivalent condition to
the fact that the coefficients of the polynomial

∏d−1
i=0 (x + tq

i

) are independent.
These coefficients can be expressed using the elementary symmetric polynomials.

They are equal to {σi,d(t, tq, . . . , tq
d−1

)}0≤i≤d.
We describe some notations. We denote by si,d and ∆d the mapping over F

defined by:

si,d(x) = σi,d(x, x
q, . . . , xq

d−1

),

∆d(x) = det((si,d(x)q
j

)0≤i,j≤d).



Using the above lemma, and these notations, we can say that the coefficients

of the polynomial
∏n
i=d+1(x+ tq

2iθ

) are independent if and only if ∆d(t) 6= 0. In
the following, we try to compute some simple expression for ∆d.

Lemma 13. For d and i integers such that 0 ≤ i ≤ d, the Frobenius mapping
commute with the mappings si,d, i.e. for every x ∈ F, si,d(x

q) = si,d(x)q.

Proof. The mappings si,d(x) are by construction sums of elementary functions

x 7→ xq
j1+...+qji , 0 ≤ j1 < . . . < ji ≤ d− 1. The Frobenius mapping is linear and

commute with each of these monomials. ut

Lemma 14. For d and i integers such that 1 ≤ i ≤ d, we have:

si,d(x) + si,d(x
q) = si−1,d−1(xq)(x+ xq

i

).

Proof. We have the following relations:∏d−1
i=0 (X + xq

i

) +
∏d−1
i=0 (X + xq

i+1

) =

(x+ xq
i

)
∏d−1
i=1 (X + xq

i

) = (x+ xq
d

)
∏d−2
i=0 (X + xq

i+1

)

and

d−1∏
i=0

(X + xq
i

) =

d∑
i=0

si,d(x)Xd−i

d−1∏
i=0

(X + xq
i+1

) =

d∑
i=0

si,d(x
q)Xd−i

d−2∏
i=0

(X + xq
i

) =

d∑
i=0

si,d−1(x)Xd−1−i.

We get the desired equality by considering the coefficient Xd−i. ut

Lemma 15. For d ≥ 1, we have:

∆d(x) = ∆d−1(xq)(x+ xq
d

)1+q+...+q
d−1

.

Proof. The function ∆d is a determinant of dimension d+1. We can note that the

first line is composed of d+1 times the value 1 since for 0 ≤ j ≤ d, sq
j

0,d = 1q
j

= 1.
We do not change the value of the determinant by adding each column to its
right neighbor. After this operation, the first line is composed of one time the
value 1 and d times the value 0. After this addition and using lemma 14, the
term (i+ 1, j + 1) is:

si+1,d(x)q
j

+ si+1,d(x)q
j+1

= (si,d(x) + si,d(x
q))q

j

= si,d+1(xq)q
j

(x+ xq
d

)q
j

,

which correspond to the term (i, j) of ∆d−1(xq) times (x+xq
d

)q
j

. By developing
the determinant using its first row, we recover ∆d−1(xq) times the factors of each

column, that is
∏d−1
j=0(x+ xq

d

)q
j

. ut



Theorem 7. For d ≥ 1,

∆d(x) =

d∏
i=1

(x+ xq
i

)q
d−i+...+qd−1

.

Proof. By induction. Indeed, the formula is straightforward for d = 1 and

∆1(x) = det

(
1 1
x xq

)
= x+ xq.

Assume that it is true for d− 1, one gets:

∆d−1(xq) =

d−1∏
i=1

(xq + xq
i+1

)q
d−1−i+...+qd−2

∆d−1(xq) =

d−1∏
i=1

(x+ xq
i

)q
d−i+...+qd−1

.

Using the formula of lemma 15, we get the result. ut


