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Abstract. The HFE (Hidden Field Equations) cryptosystem is one of the most interesting
public-key multivariate scheme. It has been proposed more than 10 years ago by Patarin
and seems to withstand the attacks that break many other multivariate schemes, since
only subexponential ones have been proposed. The public key is a system of quadratic
equations in many variables. These equations are generated from the composition of the
secret elements: two linear mappings and a polynomial of small degree over an extension
field. In this paper we show that there exist weak keys in HFE when the coefficients of
the internal polynomial are defined in the ground field. In this case, we reduce the secret
key recovery problem to an instance of the Isomorphism of Polynomials (IP) problem
between the equations of the public key and themselves. Even though the hardness of
recovering the secret-key of schemes such as SFLASH or C∗ relies on the hardness of the
IP problem, this is normally not the case for HFE, since the internal polynomial is kept
secret. However, when a weak key is used, we show how to recover all the components
of the secret key in practical time, given a solution to an instance of the IP problem. This
breaks in particular a variant of HFE proposed by Patarin to reduce the size of the public
key and called the “subfield variant”. Recovering the secret key takes a few minutes.
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1 Introduction

Multivariate cryptography is interesting from several points of view. First of all,
the hard problem it is based on, namely solving systems of multivariate equations,
is natural, well-studied and only generic algorithms with exponential worst-case
complexity are known to solve it. Multivariate cryptography has been proposed
as an alternative to the RSA cryptosystem since the underlying hard problem can-
not be attacked faster by quantum computers. Finally, it is appealing since the
public operations do not require computations with large integers, and no crypto-
processor would be needed on smartcards.
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In cryptography, it is often preferable to work with Multivariate Quadratic poly-
nomials for efficiency reasons, and the corresponding problem, finding the com-
mon zeroes of a collection of multivariate quadratic polynomials, is called the
MQ problem. It is well-known that the MQ problem is NP-complete over any
finite field [19]. Instances of 3-SAT, for instance, can easily be transformed into
polynomially-bigger instances of MQ over F2.

The HFE cryptosystem has been proposed in 1996 by Patarin in [30] in order to
avoid his attack on the Matsumoto-Imai cryptosystem [25, 29]. The latter has also
been calledC∗ and basically hides the power functionX 7→ X1+qθ in an extension
field of degree n over Fq, by composing it with two secret linear bijections S
and T . In order to invert it, it suffices to remark that this power function, as the
RSA power function, can be easily inverted provided

(
1 + qθ

)
is invertible modulo

(qn − 1). In [30], Patarin proposed to change the internal known monomial into a
secret polynomial f of small degree. The legitimate user can still easily invert the
public key since she knows S and T , and can invert the small degree polynomial
using the Berlekamp algorithm for instance.

1.1 Related Work

From the adversary point of view, the action of S and T transforms the secret
internal polynomial into a very sparse univariate polynomial of very high degree,
as shown for instance by Kipnis and Shamir in [23].

A possible decryption attack would consist in inverting or factorizing this poly-
nomial. However, there are no efficient algorithms to perform these tasks (an
attempt can be found in [37]), and merely deciding the existence of roots is in fact
NP-complete [23].

HFE belongs to the category of public-key cryptosystems based on the hardness
of computing a functional decomposition: given the composition of two func-
tions f and g, can one identify the two components? Other examples include C∗,
SFLASH [32], FAPKC [38], 2R [34] and McEliece [26]. With the exception of
the latter, the former have all been broken because computing a functional decom-
position was not as hard as expected. In the context of HFE, computing such a
decomposition is related to decomposing the univariate representation of the pub-
lic key, in order to recover the secret internal polynomial f as well as polynomial
representations of S and T . Computing polynomial decompositions is a simple
and natural mathematical problem which has a long history, going back to the
works of Ritt and Ore in 1922 and 1930 respectively [28, 36]. Today, polyno-
mial decomposition algorithms exist for some classes of polynomials over finite
fields [39, 40], but no such algorithm is applicable to HFE. One step of the attack
presented in this article amounts to computing a polynomial decomposition, and
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makes use of Gröbner bases.
The complexity of existing attacks, which all amount to solving systems of

quadratic equations, depends on the degree d of the secret internal polynomial.
When this degree is fixed, their complexity is polynomial in the security parame-
ter n, although the exponent can be ridiculously large. This suggest that d should
be an increasing function of n to make the complexity of the attacks superpoly-
nomial. However, in order for decryption to be polynomial, d must grow at most
polynomially in n. We consider this setting to be natural, because decryption is
polynomial yet no known polynomial attack exists. We will therefore assume in
the remaining of the paper that d is polynomial in n.

A simple decryption attack against HFE consists, given a ciphertext, in trying
to solve the equations given by the public key. In 2003, Faugère and Joux exper-
imentally showed that the HFE equations are not random systems of multivariate
equations, because computing a Gröbner basis for these equations is much easier
than the corresponding problem with random quadratic equations [16]. This al-
lowed a custom implementation of the F5 algorithm [15] to break the first HFE
challenge, for which the public key has 80 quadratic equations in 80 unknowns
over F2. Later, Granboulan et al. [21] showed that specific algebraic properties
of the HFE equations make the complexity of inverting HFE subexponential, in
time O

(
exp

(
log2 n

))
.

In general, the hardness of recovering the secret key of HFE from the public
key is unrelated to the Isomorphism of Polynomials (IP) problem [30], unless the
internal polynomial is made public. A key recovery attack in the usual case where
this polynomial is secret was presented in [23] and turns the problem of recovering
T into an instance of the MinRank problem, the decisional version of which is NP-
Complete [6]. Solving this instance of MinRank can be done by solving an overde-
termined system of about n2 quadratic equations in about (n · log d) variables. The
complexity of solving these equations is subexponential inO

(
exp

(
log3 n

))
. This

is too high to be practical, even for parameters corresponding to the HFE challenge
that was broken.

These results show that HFE is not as robust as expected. However, can we
consider HFE really broken? Is it still a viable alternative to RSA?

The cryptographic community often perceives HFE as broken, because of the
practical attacks on some instances, and vastly lost both trust and interest in it. We
would like to argue that the situation of HFE is slightly more complex. The com-
plexity of some Gröbner basis algorithms, like F5 [15] is better understood [1] and
allows to estimate the complexity of the decryption attacks, which remains rela-
tively high for general instances. Furthermore, Dubois and Gama have studied the
degree of regularity of various classes of HFE instances in [13]. While they only
provide an upper-bound, their result show that there are wide ranges of parame-
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ters that are not provably broken by the direct Gröbner attack. Moreover, standard
modification—such as removing some equations from the public key—destroy the
algebraic structure presented by the public key and that was exploited by Gröbner
basis algorithms. HFE with removed public equations is often called HFE−, and
seems suitable as a signature scheme. No attack faster than exhaustive search are
known against HFE−. In particular, the second HFE cryptanalytic challenge, with
removed public equations, is currently far from being broken.

All in all, HFE is comparatively in better shape than the SFLASH signature
scheme for which polynomial time algorithms are known both to invert [11, 12]
and to recover equivalent private keys [18]. SFLASH is based on C∗, hence has
a single internal monomial, and the attacks against SFLASH exploit the fact that
multiplication matrices commute in some way with this internal monomial. Using
this property, it is possible to recover conjugates of the multiplications by the se-
cret matrix S using simple linear algebra on the differential of the public key [18].
However, for general HFE, the multiplications no longer commute with the se-
cret polynomial. Another issue is that we also need to recover the internal secret
polynomial.

1.2 Our Results

In this paper, we consider the key recovery problem on a class of weak keys for
HFE. As opposed to the decryption attack of Faugère and Joux [16], we recover
an equivalent representation of the secret key that subsequently allows to inverse
the trapdoor with the same complexity as the legitimate user. The weak instances
we attack have an internal polynomial with coefficients in the ground field and not
in the extension field as it was originally specified, or instances that are reducible
to these specific ones (by considering equivalent transformations S and T , see
section 3). Some instances belonging to this category were proposed by Patarin
himself in [31] (an extended version of [30]) with the aim of reducing the size of
the HFE public key (the so-called “subfield” variant). However, notice that the
family of weak keys described here does not reduce to this subfield variant, and
choosing the coefficients of the secret polynomial in the base field can seem rather
natural. While in general, the hardness of the key-recovery does not depend on
the hardness of the IP problem, we show that key recovery can be reduced to an
instance of the IP problem, and that the solutions of this problem allow us to effi-
ciently recover all the secret elements (or equivalent data). The latest IP algorithms
allows to solve the instances in practice for realistic parameter sets. To mount our
attack, as in the SFLASH case [11], we try to find a commutation property to gain
information about the secret key. In our attack, since multiplications no longer
commute, we instead use the Frobenius map.
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Coming back to the subfield variant, other schemes, including UOV [22] for in-
stance, also have subfield variants, and the default in the design of an older version
of SFLASH (v1) was to choose the secrets in a subfield. These schemes, or their
subfield variants have all been broken: SFLASH v1 was attacked by Gilbert and
Minier in [20], and subfield-UOV was shown to be insecure as well [4]. Although
SFLASH and HFE share a similar structure, the Gilbert-Minier attack against
SFLASH v1 cannot be applied to subfield-HFE, since it is based on Patarin’s at-
tack against C∗. Because this latter attack has no equivalence for HFE, there is no
known attack against the subfield variant of HFE.

As mentioned above, the complexity of nearly all existing attacks on HFE de-
pends on the degree of the internal secret polynomial. Even the most concrete and
realistic threat, namely computing a Gröbner basis of the public-key, will become
unrealistic if this degree is chosen high enough (a drawback is that decryption
then becomes slower). A nice feature of the attack presented in this paper is that
its asymptotic complexity is only marginally affected by the degree of the internal
polynomial. As such, it be applied in practice to HFE instances on which existing
attacks would be completely intractable. We also argue that under standard con-
jectures on the complexity of Gröbner basis computation, it is possible to establish
that the complexity of our remains polynomial when the degree of the internal
polynomial grows polynomially with n.

1.3 Organization of the Paper

Section 2 gathers some mathematical results, as well as basics on the HFE cryp-
tosystem and known results on the Isomorphism of Polynomials problem. Then,
we characterize a class of weak keys in section 3, and we describe our attack
against these weak keys in section 4. Finally, in section 5, to illustrate the at-
tack, we show that we can break in practice a wide range of realistic parameters,
including the ones proposed by Patarin for the “subfield” variant.

2 About HFE

2.1 Mathematical Background

Extension Fields and Vector Spaces. Let K be the finite field with q elements
and L an extension of K of degree n > 1. Recall that L is essentially the quotient
of K[X] by the principal ideal generated by P (X), an irreducible polynomial of
degree n over K[X]. L is isomorphic to Kn via an application ϕ. For the sake
of convenience, it can be specified that ϕ returns the only polynomial of each
equivalence class of degree less than n. Hence, any application A defined over L
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can be seen as an application over Kn and conversely (just consider ϕ−1 ◦A ◦ ϕ).
Recall that any application over L is a polynomial of L[X]. Two matricesA andB
are said to be similar if there exist P ∈ GLn (K) such thatA = P ·B ·P−1. Lastly,
given a fixed element a ∈ L, the application x 7→ a · x is linear, and thus can be
represented over Kn by a matrix Ma.

The Frobenius Map. The application F : X 7→ Xq over L is called the Frobe-
nius map. It is an automorphism of L that fixes any element of K. As a conse-
quence, F can also be seen as a matrix F ∈ GLn (K). A polynomial P ∈ L[X]
commutes with F if and only if its coefficients are in K.

Linear Polynomials. Let M be an endomorphism of Kn. It can be represented
by a matrix over Kn, but also as a polynomial over L. Such K-linear (or “addi-
tive”) polynomials only have monomials of degree qi, for 0 ≤ i ≤ n − 1. In
the sequel, we will always identify a (n × n) matrix over K with its polynomial
representation over L, and we will refer to the polynomial representation over L
of such a matrix. The set of matrices commuting with F over Mn(K) is the K-
vector space of dimension n generated by

(
F0,F, . . . ,Fn−1

)
. We will also need

the following lemma:

Lemma 2.1. LetM ∈ GLn (K) be an invertible matrix, and let P =
∑n−1

i=0 ai ·Xi

(resp. Q =
∑n−1

i=0 bi ·Xi) the polynomial representation ofM over L (resp. M−1).
In general the ai’s and bi’s live in L. But we have:

(a0, a1, . . . , an−1) ∈ Kn ⇐⇒ (b0, b1, . . . , bn−1) ∈ Kn

Proof. If the polynomial representation of M has coefficients in K, then M com-
mutes with F. This implies that M−1 also commutes with F, which in turn implies
that the polynomial representation of M−1 has coefficients in K.

2.2 Hidden Field Equations

HFE Basics. The HFE scheme was designed in [30] by Patarin. Note that spe-
cific variations of HFE do exist, but we will focus on the basic HFE scheme. Let
us briefly recall its mechanism.

Let K = Fq. The HFE secret key is made up of an extension L of degree n
over K, a low-degree polynomial f over L, and two invertible affine mappings S
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and T over Kn. The secret polynomial f has the following particular shape:

f(X) =
∑

0≤i,j≤n

qi+qj≤d

ai,j ·Xqi+qj +
∑

0≤k≤n

qk≤d

bk ·Xqk + c, (2.1)

with the ai,j , the bk and c lying in L. Polynomials with the same shape as f are
called HFE polynomials. Note that these polynomials were also studied much ear-
lier in a completely different context by Dembowski and Ostrom [9], so they are
sometimes referred to as D–O polynomials in the literature. Because decryption
requires to invert f , the maximum degree of f , denoted by d, has to be chosen so
that the factorization of f over L is efficient. All known algorithms for factoriz-
ing over finite fields are at least quadratic in the degree of the polynomial, which
restricts d to values smaller than about 216 if decryption needs to be practical.
However, d must be a growing function of n as simple polynomial-time decryp-
tion attacks exist otherwise. We therefore assume that d is a polynomial function
of n. It also makes sense to consider degree bounds of the form d = 2 · qD,
because in equation (2.1), we may then consider the sum over values of i and j
smaller than D. Because the iterates of the Frobenius are K-linear, then f , seen as
a transformation of Kn, can be represented by a vector of n quadratic polynomials
in n variables over K. This property extends to the public key of the basic HFE
scheme, defined by PK = T ◦ f ◦ S. In order to offer non-trivial encryption, f
must logically be non-linear. Also, because HFE was designed specifically to cir-
cumvent the attack that destroyed C∗, we will assume that the internal polynomial
always has at least two non-linear terms.

Note that when K = F2, we may assume ai,i = 0, by choosing bi+1 accordingly.
As such, there areD(D+5)/2+3 terms in f when q 6= 2 and (D+2)(D+1)/2+2
terms when q = 2.

Equivalent Keys for HFE. In HFE, the public key can be derived from the secret
key in polynomial time by an algorithm PKGen that takes as argument T, f , S and
L (i.e., the irreducible polynomial P defining L and the correspondance ϕ between
L and Kn). Two secret keys are equivalent if they yield the same public key. For
instance, it was shown in [41, 42] that an HFE public-key is always generated by
a secret key in which S and T are linear (as opposed to affine). The affine part
of S and T can be removed by changing the constant component of f . Next, if
α, β ∈ L, then it is possible to simultaneously replace T by T · Mα and S by
Mβ · S. It is sufficient to replace f by α · f(β−1 · X) in order for the public key
to remain the same, and this allows to choose the values of both S and T on one
point.
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As a consequence, a set of q2n · (qn − 1)2 equivalent secret keys is identified
(this number assumes that L is fixed). It was not formally established that all the
equivalent secret keys belong to this set, even though this seems likely when f is a
randomly-chosen HFE polynomial.

Irrelevance of Keeping the Extension Field Secret. While the original descrip-
tion of HFE [30] explicitly specifies that the extension field L must be part of the
secret key, the same paper notes that this does not improve the security of the
trapdoor, because there always exist equivalent secret keys for all the possible de-
scriptions of L. As a matter of fact, the specifications of both Quartz [33] and
SFLASH [32] make the extension field public. In any case, it is possible to gener-
ate the same public key from the same secret polynomial, while fixing an arbitrary
irreducible polynomial P defining L, and an arbitrary correspondence between
L and Kn. Any isomorphism between Kn and L being an invertible K-linear
map [24], it simply requires slight modifications on S and T .

Proposition 2.2. Let SK = (T, f , S, P, ϕ) be an HFE secret key. Then for any
choice of an extension field L′ = K[X]/P ′(X) of degree n, and for any choice of
an isomorphism ϕ′ between L′ and Kn, there exist two affine bijections S′ and T ′

such that SK′ = (T ′, f , S′, P ′, ϕ′) is equivalent to SK (i.e., generates the same
public key).

Proof. Recall that all finite fields of the same cardinality are isomorphic [24].
Therefore let us consider a field isomorphism ζ : L→ L′. Recall that ϕ : Kn → L
and ϕ′ : Kn → L′ are both isomorphisms as well. The notation PK = T ◦ f ◦ S
is unambiguous when the extension field L is clearly defined. Here we will write:

PK = T ◦ ϕ−1 ◦ fL ◦ ϕ ◦ S
PK′ = T ′ ◦ ϕ′−1 ◦ fL′ ◦ ϕ′ ◦ S′

Let us solve PK = PK′ for S′ and T ′. Because the two internal polynomial in
PK and PK′ are the same, we can write:

ϕ ◦ T−1 ◦PK ◦ S−1 ◦ ϕ−1 = ζ−1 ◦ ϕ′ ◦ T ′−1 ◦PK′ ◦ S′−1 ◦ ϕ′−1 ◦ ζ

And it follows that in order to enforce PK = PK′ it is sufficient to have:

T ′ = T ·
(
ϕ′−1 ◦ ζ ◦ ϕ

)−1

S′ = S ·
(
ϕ′−1 ◦ ζ ◦ ϕ

)
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And since ϕ′−1 ◦ ζ ◦ ϕ is an automorphism of Kn, we have S′, T ′ ∈ GLn (K).
Thus the secret key (T ′, f , S′, P ′, ϕ′) is equivalent to (T, f , S, P, ϕ).

So, keeping the representation of L secret does not improve the resistance of
HFE to key-recovery attacks. Would the extension be secret, one could just ar-
bitrarily fix its own and be guaranteed that an equivalent secret key exists. As a
consequence, throughout the sequel, we assume that the description of L is public.

2.3 Known Algorithms for Finding Isomorphisms of Polynomials

In this section we briefly list the known techniques to solve the Isomorphism of
Polynomials (IP) problem. This problem was first introduced in [30], and its hard-
ness underlies for instance the hardness of the key-recovery of the C∗ scheme. As
already mentioned, the security of HFE does not rely in general on the hardness of
this problem. However, in the case of the attack on specific instances presented in
this paper, we reduce the recovery of the private key to solving an instance of the
IP problem. Moreover, solving this problem happens to be practical in some cases
(e.g. the “subfield” case, see section 5).

Recall that finding an “isomorphism” between two vectors of multivariate poly-
nomials a and b means finding two invertible matrices U and V in GLn(Fq), as
well as two vectors c and d in Fqn such that:

b (x) = V (a (U · x+ c)) + d (2.2)

It has been proved that the IP problem is not NP-hard, unless the polynomial
hierarchy collapses [17]. On the other hand, IP has been shown to be as hard
as Graph-Isomorphism [35], for which no algorithm with polynomial worst-case
complexity is known.

The first non-trivial algorithm for IP, known as the “To and Fro” technique, is
due to Courtois et al. [35]. In its primitive form, this algorithm assumes the ability
to invert the polynomial systems, and has therefore an exponential complexity. A
theoretical, birthday-based version of this algorithm is claimed to solve the prob-
lem in time and space O

(
qn/2

)
if c = d = 0.

In [17], Faugère and Perret present a new technique for solving IP when c =
d = 0. The idea is to model the problem as an algebraic system of equations and
solve it by means of Gröbner bases [5, 8]. This technique has the advantage over
the previous one that it is deterministic and always succeeds. On the down side,
its complexity is hard to predict. In practice, it turns out to be efficient for random
inhomogeneous instances of IP (where the coefficients of all the monomials of
all degree of a and b are randomly chosen in Fq). On these instances of IP, the
practical complexity of [17] has empirically been observed to be O

(
n9
)
.
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More recently, a faster algorithm dealing with the same class of instances (c =
d = 0) provably achieves an expected complexity ofO

(
n6
)

on random instances [3].
This means that solving such random instances is feasible in practice for n = 128
or n = 256, which are the highest values encountered in practical HFE settings.

No polynomial algorithm is known when c 6= 0 or d 6= 0, or when a and b
are homogeneous, and these are the most frequent settings in multivariate cryp-
tography. However, it was also shown in [3] that it is possible to solve these hard
instances without first guessing c and d. This enables a birthday-based algorithm
to deal with these hard instances in time O

(
n3.5 · qn/2

)
.

3 A Specific Family of HFE Secret Polynomials

Similarly to the attacks against C∗ or SFLASH, the main idea we exploit is that
some HFE secret polynomials may commute with some special functions. This
commutativity property can then in turn be used to acquire informations on the
secret elements.

A Commutativity property for Some HFE Secret Polynomials. Let us first
consider the à la C∗ case, where the secret polynomial f over L is just a monomial
α ·Xqi+qj , with α ∈ L. Then the public key PK = T ◦ f ◦S can also be written as
(T ·Mα)◦Xqi+qj ◦S, by “absorbing” the multiplication by the constant α into the
outer secret linear transformation. As a consequence, without loss of generality,
we can assume that α = 1.

This secret monomial has very special commutativity properties, which were
used in [11,12] to break SFLASH. More precisely, composing it on the right hand
size by multiplications Mx by an element x ∈ L is equivalent to composing it on
the left hand size by M

xqi+q
j . Another property, not used in [11, 12], is that it also

commutes with the Frobenius map F (and hence with the iterates of the Frobenius
map).

When we consider an arbitrary HFE secret polynomial, the two commutation
properties no longer hold in general. However, if we restrict the HFE polynomials
to have their coefficients in K (instead of the extension field L), we lose commuta-
tivity with multiplications but commutativity with the Frobenius map still remains.
In the sequel, we show how this specific property can be exploited to perform a
key-recovery attack, described in Section 4. Therefore, we will say the the secret
keys in which the internal polynomial has coefficients in K are weak secret keys.
Such instances of HFE are illustrated by figure 1.

Our key-recovery attack could also apply to monomial instances of HFE, but
this is not the point of this paper, as it has already been efficiently done [11,12,18].
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Figure 1: A weak public-key PK = T ◦ f ◦ S. The broken arrow indicates that f
has coefficients in K.

Corresponding Public Keys. The attack we discuss in this paper recovers a
useful secret key by exploiting only knowledge of the public key. The attack works
at the sole condition that the public key can be generated by a weak secret key.
Therefore, we will say that such public keys are weak public keys. We note that
a weak public key has not necessarily been generated by a weak secret key. For
instance, let f be an HFE polynomial with coefficients in K, and let α, β ∈ L.
Then let us define f ′ : x 7→ α · f(b ·x). This HFE polynomial has coefficients in L.
Now let S, T ∈ GLn (K), and consider the HFE secret key (T, f ′, S). It does not
fall into our definition of weak secret keys, because f ′ /∈ K[X], but it generates a
weak public key: it is straightforward that it is equivalent to (T ·Mα, f ,Mβ · S).
To summarize, our attack will be applicable whenever the internal polynomial has
the following shape:

f ′(X) =
∑

0≤i,j≤n

qi+qj≤d

(
α · ui,j · βq

i+qj
)
·Xqi+qj+

∑
0≤k≤n

qk≤d

(
α · vk · βq

k
)
·Xqk+α ·c

(3.1)
with ui,j , vk, c ∈ K, α, β ∈ L. In other words f ′ = Mα ◦ f ◦Mβ , where f has
coefficients in K.

Notice that legitimate users could easily check whether their secret key gener-
ates a weak public key by checking if their internal polynomial can be written as
in equation (3.1).

4 The Attack

We now describe a key-recovery attack against the class of weak keys described in
section 3. In the sequel, we then assume that the internal secret polynomial f has
coefficients in K.

As the attack is quite complex, let us give an overview. A pseudo-code of
the attack is given in fig. 2. First, as already mentioned in Section 3, we use
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Figure 2 Pseudo-code of the attack

Require: An HFE public key PK, generated by (T, f , S) such that f ∈ K[X].
Ensure: An equivalent secret key: (T ′, f ′, S′), with deg f ′ ≤ deg f .

1: let F denote the matrix of the X 7→ Xq function over Kn

2: // section 4.1
3: repeat
4: Let U, V ∈ GLn (K) be a (random) solution to the IP problem:

U ◦PK = PK ◦ V.

5: until there exist P ∈ GLn (K) such that U = P−1 · F · P
6: // section 4.2
7: for all i0 in [1;n− 1] co-prime with n do
8: Let k = i0

−1 mod n
9: Compute S̃, T̃ such that F = S̃ · V k · S̃−1 = T̃−1 · Uk · T̃

10: // section 4.3
11: Interpolate g = T̃−1 ·PK · S̃−1.
12: if g has all coefficients in K then
13: // section 4.4
14: Compute F1, F2 ∈ GLn (K) and f2 ∈ K[X], s.t. deg f2 ≤ deg f and:

g ◦ F1 = F−1
2 ◦ f2.

15: return
(
T̃ · F−1

2 , f2, F
−1
1 · S̃

)
16: end if
17: end for

the commutation of the Frobenius map with the secret polynomials considered,
which propagates to the public key PK. This key property allows us to recover
applications closely related to S and T . An interpolation of PK combined with
these applications then gives us a polynomial over K from which we recover f or
an equivalent low-degree polynomial by computing a functional decomposition.
In any case, we obtain the original secret key or an equivalent one that allows us
to decrypt as efficiently as the secret key owner. All these assertions are made
explicit and justified in this section.
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4.1 A Useful Property of HFE Secret Polynomials Lying in K[X]

Recall from Section 2.1 that because f has coefficients in K, then it commutes
with F:

f ◦ F(X) = F ◦ f(X) (4.1)

Patarin left as an open problem whether this property has security implications
or not. We shall demonstrate that it does indeed. Most importantly, this property
is detectable in the public-key.

Proposition 4.1. There exist non-trivial polynomial isomorphisms between the
public key and itself. More precisely, the invertible mapping ψ defined below
transforms a matrix M that commutes with f into a solution of the polynomial
automorphism of the public-key:

ψ : M 7→
(
T ·M−1 · T−1, S−1 ·M · S

)
As a consequence, ψ(F ), . . . , ψ

(
Fn−1

)
are non-trivial isomorphisms between

PK and itself.

Proof. Let M be a matrix such that f ◦M =M ◦ f . Then we get:

PK ◦ (S−1 ·M · S) = T ◦ f ◦ S · S−1 ·M · S
= T ◦M ◦ f ◦ S
= (T ·M · T−1) ◦PK

⇔ PK = (T ·M · T−1)−1 ◦PK ◦ (S−1 ·M · S)

Then, because of (4.1), ψ(F ), . . . , ψ
(
Fn−1

)
are automorphisms of the public key.

The existence of other solutions besides those mentioned in proposition 4.1 is
extremely unlikely, unless the situation is very degenerate. Indeed, this would
imply the existence of other linear applications commuting with the (non-linear)
internal polynomial. However, besides the monomial instances, where multiplica-
tion matrices commute in some sense with f , we are not aware of instances that
would verify such a property. Thus, if we consider a particular solution of the
problem of retrieving an automorphism of the public-key, we can assume that it
is ψ

(
F i0
)
, for some unknown power i0.
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Hardness of the IP Problem. We discussed algorithms for solving the IP prob-
lem in section 2.3. In order for the the polynomial-time IP algorithms to apply, the
following conditions needs to be met:

i) The secret transformations S and T must be linear (as opposed to affine).

ii) The K-linear coefficients bk of (3.1) must not all be zero.

iii) The constant coefficient c of (3.1) must be non-zero.

The first condition can only be satisfied if choosing linear S and T was a delib-
erate decision (otherwise it will only happen with negligible probability). There
are good reasons of doing so: first it reduces the size of the private key. Second,
as shown in section 2.2, S and T can be assumed to be linear in the usual setting,
because of the existence of equivalent keys. However, we stress that this last fact
is no longer true if the internal polynomial f is chosen in K[X] instead of L[X].
Series of bad design decisions could still lead to the combination of a restricted f
and linear S and T .

The second condition will always be satisfied with high probability, and the
third will be satisfied with probability 1/q. It must be noted that if S and T are
linear, and if c = 0 in (2.1), then the public-key sends zero to zero, which might
not be desirable.

In the case where S and T are affine, the situation is much more painful, and
breaking the IP instance in practice requires a workload of qn/2. In the case of the
“subfield variant” though, all the numerical quantities lie in a subfield Fq′ of Fq,
where q′ is quite small (the typical value is q′ = 2). This makes breaking the IP
instances feasible in practice for the subfield variant (see section 5.2).

4.2 Retrieving “nearly S” and “nearly T ” Applications

Let us assume that we have found an automorphism (U, V ) = ψ
(
Fi0
)

of the
public-key, for some unknown integer i0 in the interval [1;n − 1]. The whole
point of the attack is to “extract” as much information as possible about S and T
from this automorphism. For this purpose, the value of i0 has to be known, and it
is required that i0 and n are relatively prime. This latter condition can be easily
checked for: Fi and Fj are similar matrices if and only if gcd(i, n) = gcd(j, n).
Therefore, i0 is relatively prime with n if U and F are similar. If this turns out not
to be the case, we take another automorphism of PK, until it passes the test. Since
there are φ(n) values of i0 that are prime with n, we expect to check n/φ(n) =
O (log logn) candidates.

To derive the actual value of i0, we simply guess its value, and check whether
the remaining steps of the attack are carried out successfully. Fortunately, there



A Family of Weak Keys in HFE 261

is a way to discard bad guesses systematically before the most computationally
expensive step of the attack, as we will explain in section 4.3.

With the preceding notations, we have the following result:

Proposition 4.2. Let (U, V ) = ψ
(
Fi0
)
, with gcd(i0, n) = 1. Let k be such that

k · i0 = 1 mod n.

i) There exist S̃, T̃ in GLn (K) such that F = S̃ ·V k · S̃−1 and F = T̃−1 ·Uk · T̃ .

ii) Both S̃ · S−1 and T̃ · T−1 commute with F, hence their polynomial represen-
tations over L are in fact polynomials with coefficients in K.

Proof. i) We know that U and V are both similar to Fi0 . Thus Uk and V k are
both similar to Fi0·k = F.

ii) Let us consider the case of S̃ (something similar holds for T̃ ). We have:

F = S̃ · V k · S̃−1

= S̃ · S−1 · Fi0·k · S · S̃−1

= S̃ · S−1 · F · S · S̃−1

And thus F ·S̃ ·S−1 = S̃ ·S−1 ·F. This commutation property directly implies
the announced result on the polynomial representations (cf. section 2).

In practice, S̃ and T̃ can be found very efficiently through linear algebra, given
that i0 is known. Note that for now, this proposition cannot be used to test whether
our current guess for i0 is correct, since we do not know S.

4.3 Building a High-Degree Equivalent Secret Key over K[X]

The information about S (resp. T ) contained in S̃ (resp. T̃ ) can be used to cancel
the action of S and T on the public key. Following proposition 4.2, we define
F1 = S̃ · S−1 and F2 = T−1 · T̃ , and we immediately obtain:

T̃−1 ◦PK ◦ S̃−1 = F−1
2 ◦ T−1 ◦ T ◦ f ◦ S ◦ S−1 ◦ F−1

1

= F−1
2 ◦ f ◦ F−1

1 . (4.2)

This seems interesting, and we therefore define:

g = T̃−1 ◦PK ◦ S̃−1 mod
(
Xqn −X

)
(4.3)

Because the HFE polynomials are stable by left and right composition by addi-
tive polynomials and by reduction modulo Xqn −X , the “peeled off” polynomial
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g is still an HFE polynomial. Thus g hasO
(
n2
)

coefficients, and that they can be
uniquely determined in polynomial time by interpolation (this was noted in [23].
Note that there would not be a unique solution if we did not perform the mod-
ular reduction of g). By doing so, we obtain an equivalent secret key, namely(
T̃ ,g, S̃

)
.

By itself, this equivalent key is not particularly useful, since the degree of g is
typically qn, and we are therefore still facing our initial task of factorizing a sparse
polynomial of very high degree. However, g has a very important property which
brings us one step closer to the original secret-key:

Proposition 4.3. The coefficients of g are in K (and not in L).

Proof. By hypothesis, the coefficients of f are in K. From proposition 4.2, item
ii), we have that the coefficients of the polynomial representation of F1 and F2
are in K, then, so are those of the polynomial representations of F1

−1 and F2
−1

(by lemma 2.1). This and (4.2) shows that T̃−1 ◦PK ◦ S̃−1 has coefficients in K.
From there, it is straightforward that g has coefficients in K.

The result of proposition 4.3 is illustrated in figure 3. This figure also helps
remembering how the applications introduced so far intervene.

Figure 3: PK = T ◦ f ◦S = T̃ ◦g ◦ S̃. Broken arrows stand for applications with
coefficients in K.

This proposition can be used to verify if our guess for i0 was right. Indeed, if g
is found not to be in K[X], then the guess was wrong. We are aware that the fact
that g ∈ K[X] does not rigorously prove that we have found the right value of i0.
However, it does not matter, as g ∈ K[X] is sufficient for the subsequent step to
work.
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4.4 Recovering a Low-Degree Equivalent Secret Key

To be usable, an equivalent secret key must have an internal polynomial of low
degree. We now show how to obtain one, by actually computing the decomposition
given by equation (4.2) of Section 4.3. This is in fact a much easier problem than
computing the equivalent decomposition on the original public key, because we
deal with applications whose coefficients belong to K. They are then left invariant
by the Frobenius (hence by F1 and F2), which implies that the problem of finding
the decomposition reduces to finding a solution of an overdetermined system of
quadratic equations. This system can be solved in practical time by computing a
Gröbner basis, as we now show. To this end, we introduce the following notations,
where all the coefficients in the expressions are now known to lie in K:

F1(X) =

n−1∑
k=0

xkX
qk F−1

1 (X) =

n−1∑
k=0

ykX
qk

F2(X) =

n−1∑
k=0

zkX
qk F−1

2 (X) =

n−1∑
k=0

tkX
qk

g(X) =
∑

qi+qj<qn

aijX
qi+qj +

n−1∑
i=0

biX
qi + c

f2(X) =
∑

qi+qj≤d

eijX
qi+qj +

∑
qi≤d

fiX
qi + g

Then, we consider the following polynomial equation, also represented by fig-
ure 4, obtained by composing both sides of equation (4.2) of Section 4.3 with F1:

g ◦ F1 = F−1
2 ◦ f2. (4.4)

Let us now substitute the expression of F1 and g in the left-hand-side of (4.4).
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Figure 4: g = F−1
2 ◦f2◦F

−1
1 . Broken arrows stand for applications with unknown

coefficients.

We find:

g ◦ F1 =
∑

qi+qj<qn

aij

(
n−1∑
k=0

xkX
qk

)qi+qj
+
n−1∑
i=0

bi

(
n−1∑
k=0

xkX
qk

)qi
+ c

=
∑

k,l∈{0,...,n−1}

qi+qj<qn

aij · xk · xl ·Xqi+k+ql+j

+
∑

i,k∈{0,...,n−1}

bi · xk ·Xqi+k + c,

We observe that g ◦ F1 is a polynomial whose coefficients are quadratic polyno-
mials in the coefficients of F1. Now, let us substitute the expression of F−1

2 and f2
in the right-hand-side of (4.4). We find:

F−1
2 ◦ f2 =

n−1∑
k=0

tk

 ∑
qi+qj≤d

eijX
qi+qj +

∑
qi≤d

fiX
qi + g

qk

=
∑

k∈{0,...,n−1}

qi+qj≤d

tk · eij ·Xqi+k+qj+k

+
∑
qi≤d

k∈{0,...,n−1}

tk · fi ·Xqi+k + g ·
n−1∑
k=0

tk
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We again find that F−1
2 ◦ f2 is a polynomial whose coefficients are quadratic poly-

nomials in the coefficients of both f2 and F−1
2 .

This shows that (4.4) is equivalent to a system of multivariate quadratic equa-
tions over K with O

(
n2
)

quadratic equations and O
(
n+D2

)
unknowns, the

unknowns being the coefficients of F1, F
−1
2 and f2. This system can be gener-

ated by reducing both sides of (4.4) modulo Xqn −X and identifying the coeffi-
cients of the monomials in X . The problem of computing the decomposition of
equation (4.4) is therefore reduced to that of solving an overdetermined system of
quadratic equations.

However, equation (4.4) admits many parasitic solutions (for example, F1 =
f2 = 0, F−1

2 being arbitrary). To avoid these trivial solutions, we in fact consider
an extended system: 

F1 ◦ F−1
1 = Id

F2 ◦ F−1
2 = Id

g ◦ F1 = F−1
2 ◦ f2

(4.5)

This new system avoids the parasitic solutions by forcing F1 and F2 to be invert-
ible. We now argue that (4.5) is also equivalent to a system of quadratic equations,
whose unknowns are the coefficients of F1, F

−1
1 , F2, F

−1
2 and f2. The third equa-

tion has already been shown to be translatable to multivariate quadratic equations.
Substituting the definitions of F1 and F−1

1 in F1 ◦ F−1
1 yields:

n−1∑
k=0

n−1∑
`=0

(xk · y`) ·Xq`+k = X

We observe that the coefficients of the left-hand side are quadratic in the xk’s
and yk’s, therefore we obtain n quadratic equations by reducing the LHS modulo
Xqn − X and equating the coefficients on both sides of the equation. The same
goes for F2 ◦ F−1

2 = Id.
All in all, assuming that the degree of f is d = 2qD, this yields n(n+ 3)/2 + 1

equations in 4n+D(D+5)/2+4 variables, not counting eventual field equations
(one per variable). The existence of at least one solution is guaranteed, because of
equation (4.2) of Section 4.3, as long as we picked the right power of the Frobenius
matrix in section 4.1. In fact, even though we just need one, we know that many
solutions exist: for instance because the Frobenius commutes with everything in
equation (4.4), we can take a particular solution, compose both F−1

2 and F1 with
the Frobenius, and obtain a new solution.

It turns out that these equations can be solved efficiently, even though the num-
ber of variables is higher than what is usually tractable, because it is very overde-
termined: we have O

(
n2
)

equations in O
(
n+D2

)
variables, and D has to be
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small for decryption to be efficient (i.e., D = O (logn)). In this setting, comput-
ing a Gröbner basis turns out to be feasible in practice.

Conjecture. The Gröbner basis of a system of random quadratic equations with
the same number of variable and polynomials as our equations can be computed
by manipulating polynomials of degree at most 8. Thus, it can be computed in
time at most O

(
n24
)

by the F4 or F5 algorithm [14,15]. This is true if D is fixed,
or even if grows polynomially with logn.

Justification of the Conjecture. We argue that the complexity of computing a Gröb-
ner basis of our equations is fact polynomial under realistic assumptions, although
in the general case the algorithms involved in the computation are simply or doubly
exponential.

The usual strategy to solve such an overdetermined system of equations is to
compute a Gröbner basis for the graded reverse lexicographic order, since it is
easier, and then to convert it to a Gröbner basis for the lexicographic order. Let
us recall that the complexity of all known Gröbner bases algorithms depends on
the degree of regularity of the system [1, 7]. This corresponds to the maximal
degree of polynomials manipulated during a Gröbner basis computation. If dreg
is the degree of regularity of an ideal I ⊂ k[x1, . . . , xm], then the complexity of
computing a Gröbner basis of I using the F5 algorithm [15] is upper-bounded by:

O

((
n+ dreg

dreg

)ω)
= O

(
nω·dreg

)
where ω is the linear algebra constant (between 2 and 3). In general, it is a difficult
problem to know a priori the degree of regularity, although lower-bounds were
shown in the context of the analysis of the XL algorithm [10].

To upper-bound the complexity of our Gröbner-basis computation, we use an
existing approximation of the degree of regularity that applies to regular and semi-
regular system of equations (i.e., in which the equations are “as independent as
possible”. For a formal definition, see [1]). It is conjectured that the proportion of
semi-regular systems becomes 1 when n goes to +∞. Therefore, we will assume
that for large n a random system is almost surely semi-regular (which is to some
extent a worst-case assumption, as it usually means that our system is not easier
to solve than the others). The coefficients of the Hilbert series associated with the
ideal generated by a semi-regular sequence coincide with those of the series ex-
pansion of the function f(z) =

(
1− z2

)m
/(1−z)n, up to the degree of regularity.

The degree of regularity is therefore the smallest degree d such that the coefficient
of degree d in the series expansion of f(z) is not strictly positive. This property
enables an explicit computation of the degree of regularity for given values of m
and n.
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Furthermore, Bardet et al. [1] give asymptotic developments of the expression
of the degree of regularity in the case of α · n equations in n variables, for any
constant α greater than 1. While this result is not directly applicable to our case
(because we have about αn2 equations), we use it to derive a heuristic expression
of the degree of regularity for systems of α ·n2. When there are α ·n semi-regular
quadratic equations in n variables, [1] gives:

dreg = n

(
α− 1

2
−
√
α(α− 1)

)
− a1

2(α(α− 1))
1
6

n
1
3

−

(
2− 2α− 1

4
√
α(α− 1)

)
+O

(
1/n1/3

)
,with a1 ≈ −2.33811. (4.6)

While we are well-aware that it is not theoretically justified (because equa-
tion (4.6) is established for a constant α), we now set α = βn, and express dreg as
a function of β. This yields

dreg =
1

8β
− a1

2β1/3 −
3
2
+O (1/n) . (4.7)

This heuristic result can be empirically checked to be rather precise, for various
values of β and n, as shown in fig. 5. When n grows to infinity, it seems that the
degree of regularity converges to a constant, an approximation of which is given
by (4.7). We now apply this result to our setting:

(i) Consider that D is fixed. Then when n becomes big, we have β = 1/32.
Equation (4.7) then yields dreg = 7 for large n (actually computing it using
the Hilbert series gives a value of 8 for big n). Computing the Gröbner basis
can thus be achieved with complexity O

(
n8ω
)
.

(ii) Consider that the degree of f grows polynomially with n, which means that
D = O (logn). In that case we have β = 1/32 + O

(
logn
n

)
, and equa-

tion (4.7) still yields dreg ≈ 7 for large n.

This shows that even in the more general setting the computation of the Gröbner
basis should be polynomial, and the degree of the polynomials should not increase
beyond a given threshold. Fig. 6 shows the degree of regularity of systems having
the same parameters as those considered in the attack.

Comments and Practical Results. While the result conjectured above means
that computing the polynomial decomposition we are dealing with should be poly-
nomial, some remarks are in order. First, our equations are not random, not to
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Figure 5: Comparison between the heuristic estimate and the actual values of the
degree of regularity for β · n2 quadratic equations in n unknowns.

mention semi-regular. This follows from the fact that they admit many solutions,
while a random overdetermined system has no solutions with overwhelming prob-
ability. Next, our experiments (for various values of n and D) indicate that a
Gröbner basis can be computed by manipulating polynomials of degree at most 3,
leading to an empirical complexity of O

(
n9
)
. Our equations are thus easier to

solve than random systems with the same parameters.

The solution of the equations yields an equivalent secret-key:

(
T̃ · F−1

2 , f2, F
−1
1 · S̃

)
,

which allows us to decrypt with the same time complexity as the legitimate user,
since f2 has essentially the same degree as f .
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5 The Attack in Practice

This section discusses the effectiveness of the attack described in section 4. First,
we estimate the cardinality of the family of secret polynomials concerned by the
attack, thus the probability to generate a “weak” public key. We will see that this
probability is actually negligible. However, as already discussed in section 4.1 and
illustrated by Patarin’s “subfield” variant of HFE [31], we can keep in mind that
the choice of the weak parameters we highlighted in the paper can be made on
purpose. In section 5.2, we show practical results of the attack. We will see that
the attack is completely practical when the parameters choice make the IP instance
solvable in practice. We will also deal with Patarin’s “subfield” variant.

5.1 An Estimation of the Cardinality of the Family of Secret Polynomials

This section shows that the probability that the uniform random choice of a secret
key yields a weak public key is negligible. This unfortunate event happens if
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and only if the internal polynomial f has the shape given by equation (3.1). We
therefore go on to count the number of such polynomials which we call “weak
polynomials” for sake of brevity. Let us denote by #WP the number of weak
polynomials, and by #HFE(d, n,L) the number of HFE polynomials of degree
d over L. According to the previous comments (section 3), a first upper-bound
is obtained when assuming that for any choice of α, β ∈ L∗ and f ∈ K[X],
Mα ◦ f ◦Mβ is a distinct polynomial. This yields:

#WP ≤ (qn − 1)2 · #HFE(d, n,K)

However we can refine this bound, because some polynomials are counted sev-
eral times. For instance, if π ∈ K and Π ∈ L, then Π · f =

(
Π · π−1

)
· (π · f). The

same goes for right-composition. The bound therefore improves to:

#WP ≤
(
qn − 1
q − 1

)2

· #HFE(d, n,K)

Note that excluding all elements of K in our count may not be sufficient as for
some specific polynomials f , we still might have counted some polynomials sev-
eral times. This could eventually happen for some very sparse polynomials f
(made up of two terms for instance), where we could imagine that multiplica-
tions by elements belonging to a strict subfield of L (then defined by the exact
expression of the powers of X intervening in f ) would commute. However first,
this entirely depends on each polynomial, which is why a general better bound is
hard to give. And second, this concerns few polynomials and few multiplications,
so we can suppose that the previous upper-bound is rather good.

Now, in the simpler case where d = 2qD and q 6= 2, we have #HFE(d, n,K) =

q
D(D+5)

2 +3, and therefore the probability of randomly generating a weak public key
is upper-bounded by:

#WP

#HFE(d, n,L)
≤
(
qn − 1
q − 1

)2

·
(
q
D(D+5)

2 +3
)−(n−1)

= O
((

q2−D2/2
)n−1

)
This shows that the probability of generating a weak key out of bad luck is

exponentially small in the security parameter. In the same vein, we could obtain a
fairly obvious lower-bound on this probability by counting only the polynomials
of the form Mα ◦ f . All in all, the exact number of weak polynomials is delicate
to estimate, because it depends on the shape and coefficients of f .

5.2 Practical Applications and Experiments

We implemented the HFE key-generation and encryption, as well as the attack,
in the MAGMA [2] computer-algebra system. We do not claim that our imple-
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mentation is efficient, nor reflects what kind of performances can be obtained in
encryption. All the experiments were run on one core of an Intel 2.3Ghz Xeon
“Nehalem” computer with 74 Gbyte of RAM. We tested our attack on five sets
of parameters described below. We forged the solution of the IP instance from
the knowledge of the secret S and T , and estimated the time needed to solve the
corresponding problem. The actual timings are given in figure 7.

Weak Keys. We first tested the attack on realistically-sized weak keys, corre-
sponding to parameter sets A,B and C. The chosen parameters allows the encryp-
tion or signature of 256, 134 and 97 bits respectively. We choose the degree of the
internal polynomial very conservatively (i.e., much higher than what was proposed
for the HFE challenges, and high enough to make decryption painfully slow). To
make the IP part of the attack feasible, we choose the secret bijections S and T to
be linear (as opposed to affine). Then solving the IP instance is a matter of seconds
with the techniques presented in [3]. We emphasize that none of the existing attack
can be close to being practical on parameter sets A and B.

Patarin’s “Subfield” Variant of HFE. In order to reduce the size of the public
key, Patarin suggested in [31] a “subfield” variant of HFE, in which the coefficients
of the quadratic equations of PK live in a subfield k of K. If K = F256 and
k = F2, this reduces the size of the public key by a factor of 8. To achieve this, the
coefficients of S and T , the coefficients of the defining polynomial of the extension
field L, and the coefficients of the internal polynomial f have to be chosen in k
(instead of K or L for the latter). S and T will be affine, so the polynomial-time
IP algorithms do not apply in this case.

In order for the reduction of the public key size to be effective, K has to be
relatively big and k relatively small. The former implies that D cannot be very
huge, otherwise decryption is impractical, while the latter means that there is little
entropy in the internal polynomial. This opens a possible way of attack, consisting
in guessing f and then solving the IP problem to recover S and T . We shall
compare the attack presented in this paper with this simple one.

Patarin’s “concrete proposal” is parameter set D in fig. 7. For practical decryp-
tion, we have to choose D = 2 (yielding an internal polynomial of degree at most
131072), and decryption can take at most 4 minutes on our machine. The internal
polynomial has at most 10 terms with coefficients in F2. The simple “guess-f -
then-IP” key recovery attack therefore needs to solve 210 affine IP instances for
which q = 2 and n = 29. Such instances are in fact tractable even with older
techniques (though no one ever noticed it), for instance using the “to-and-fro” al-
gorithm of [35]. In that case, the “guess-then-IP” attack has a workload of 268.
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With the new attack presented in this paper, and the more advanced IP techniques
described in [3], solving the IP instance takes about one second, and our attack
takes less than one hour.

To show that the “subfield” variant is broken beyond repair, we show that it
is possible to attack in practice parameters twice as big as the concrete proposal.
This is parameter set E. The internal polynomial now has 21 terms, so the simple
attack requires breaking 221 affine instances of the IP problem with q = 2 and
n = 59. According to [3], breaking one of these instance should take about one
month using inexpensive hardware, with a workload of about 259. The “guess-
then-IP” attack is here clearly impractical with a complexity of 280. Our attack
requires one month to break the IP instance, plus about 4 hours for the remaining
steps.

6 Conclusion

In this paper, we considered a special family of HFE instances, where the internal
secret polynomial is defined over the base field K instead of the extension field
L. This modification includes a suggestion of [31] which remained unbroken until
today. We show that, in that case, there are non-trivial isomorphisms of polyno-
mials between the corresponding public key and itself. Interestingly, finding such
an isomorphism suffices to completely recover (in practical time) a secret-key that
allows fast decryption.
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Figure 7: Timings for the Attack
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