
New Second-Preimage Attacks on Hash Functions?

Elena Andreeva1, Charles Bouillaguet2, Orr Dunkelman3,4,
Pierre-Alain Fouque2, Jonathan J. Hoch3, John Kelsey5,

Adi Shamir2,3 and Sebastien Zimmer2

1 SCD-COSIC, Dept. of Electrical Engineering, Katholieke Universiteit Leuven,
Elena.Andreeva@esat.kuleuven.be

2 École normale supérieure (Département d’Informatique), CNRS, INRIA,
{Charles.Bouillaguet,Pierre-Alain.Fouque,Sebastien.Zimmer}@ens.fr

3 Faculty of Mathematics and Computer Science, Weizmann Institute of Science,
{Adi.Shamir,Yaakov.Hoch}@weizmann.ac.il

4 Department of Computer Science, University of Haifa,
orrd@cs.haifa.ac.il

5 National Institute of Standards and Technology,
john.kelsey@nist.gov

Abstract. In this work we present several new generic second-preimage attacks on hash functions. Our
first attack is based on the herding attack, and applies to various Merkle-Damgård-based iterative hash
functions. Compared to the previously known long-message second-preimage attacks, our attack offers more
flexibility in choosing the second message in exchange for a small computational overhead. More concretely,
in our attacks, the adversary may replace only a small number of blocks to obtain the second-preimage. As a
result, the new attack is applicable to hash function constructions which were thought to be immune to the
previously known second-preimage attacks. Such designs are the dithered hash proposal of Rivest, Shoup’s
UOWHF, and the ROX construction. We also suggest a few time-memory-data tradeoff variants for this
type of attacks, allowing for a faster online phase, and even allow attacking significantly shorter messages
than before.
We follow and analyze the properties of the dithering sequence used in Rivest’s hash function proposal, and
develop a time-memory tradeoff which allows us to apply our second-preimage attack to a wider range of
dithering sequences, including sequences which are much stronger than those in Rivest’s proposals. Parts of
our results rely on the kite generator, a new time-memory tradeoff tool.
In addition to analysis of the Merkle-Damgård-like constructions, we analyze the security of the basic tree
hash construction. We exhibit several second-preimage attacks on this construction, whose most notable
variant is the time-memory-data tradeoff attack.
Finally, we show how both the existing second-preimage attacks and our new attacks can be applied even
more efficiently when multiple shorter rather than a single long target messages are given.

Keywords: Cryptanalysis, Hash function, Dithering sequence, Second preimage attack, Herding attack,
Kite Generator.

? A preliminary version of this paper appeared in Eurocrypt 2008.

1 Introduction

The recent years have been very active in the area of hash function cryptanalysis and results have come out
that are of significant importance. New techniques, such as the ones by Wang et al. [48–51], Biham et al. [5], De
Canniére et al. [13–15], Klima [29], Joux et al. [25], Mendel et al. [36, 37], Leurent [31, 32], and Sasaki et al. [35,
45], to name a few, have been developed to attack a wide spectrum of hash functions. These attacks target some
actual constructions, while other attacks worked on more generic attacks. The results of Dean [16], Joux [23],
Kelsey and Schneier [27], and Kelsey and Kohno [26], explore the resistance of the widely used Merkle-Damgård
construction against several types of attacks, including multicollision attacks and second-preimage attacks.

Our work on second-preimage attacks has been motivated by the last advances, and mostly by the development
of second-preimage attacks and new hash proposals that circumvent these attacks. One of the first works that
describes a second-preimage attack against Merkle-Damgård constructions is in the Ph.D. thesis of Dean [16]. In
his thesis, Dean presents an attack that works when fixed points of the compression function can be efficiently
found. The attack has a time complexity of about 2n/2 + 2n−κ compression function evaluations for n-bit digests
where the target message is of 2κ blocks.1 Kelsey and Schneier [27] extended this result to work for all Merkle-
Damgård hash functions (including those with no easily computable fixed points) by using the multicollision
technique of Joux’s [23]. Their result allows an adversary to find a second-preimage of a 2κ-block target message
in about κ · 2n/2+1 + 2n−κ compression function calls. The main idea is to build an expandable message: a set of
messages of varying lengths yielding the same intermediate hash result. Both mentioned attacks follow the basic
approach of the long-message attack [38, p. 337], which computes second preimages of sufficiently long messages
when the Merkle-Damgård strengthening is omitted.

Variants of the Merkle-Damgård construction that attempt to preclude the aforementioned attacks are the
widepipe construction by Lucks [33], the Haifa [6] mode of operation proposed by Biham and Dunkelman, and
the “dithered” iteration by Rivest [43]. The widepipe strategy achieves the added-security by maintaining a double
internal state (whilst consuming more memory and resources). A different approach is taken by the designers of
Haifa and the “dithered” hash function, who introduce an additional input to the compression function. While
Haifa uses the number of message bits hashed so far as the extra input, the dithered hash function decreases the
size of the additional input to either 2 or 16 bits by using special dithering values [43]. Additionally, the properties
of the “dithering” sequence were claimed by Rivest to be sufficient to avoid the second-preimage attacks of [16,
27] on the hash function.

Our new second-preimage attack is based on the herding attack of Kelsey and Kohno [26]. The herding attack is
a method to perform a chosen-target preimage attack, whose main component is the diamond structure, computed
offline. The diamond structure, is a collision tree of depth `, with 2` leafs, i.e., 2` stating chaining values, that by
a series of collisions, can all be connected to some chaining value which is in the root of the tree. This root (which
we denote by h�) can be published as a target value for a message. Once the adversary is challenged with an
arbitrary message prefix P , she constructs a suffix S, such that H(P ||S) = h�. The suffix is composed of a block
that links the prefix to the diamond structure and a series of blocks chosen according to the diamond structure.
The herding attack on an n-bit hash function requires approximately 2(n+`)/2+2 offline computations, 2n−` online
computations, and 2` memory blocks.

1.1 Our Results

The main contribution of this paper is the development of new second-preimage attacks on the basic Merkle-
Damgård hash function and most of its “dithered” variants. For Merkle-Damgård hash functions, our second-
preimage attack uses a 2`-diamond structure [26] and works on messages of length 2κ blocks in 2(n+`)/2+2 offline
1 In this paper, we describe message lengths in terms of message blocks, rather than bits.

and 2n−` + 2n−κ online compression function evaluations. The attack achieves minimal total running time for
` ≈ n/3, yielding a total attack complexity of about 5 · 22n/3 + 2n−κ.

Our attack is slightly more expensive in terms of computation than the attack of Kelsey-Schneier [27], e.g.,
for SHA-1 our attack requires 2109 time to be compared with 2105 for the attack of [27]. However, our new attack
generates an extremely short patch: the new message differs from the original in only `+2 blocks, compared with
an average length of 2κ−1 blocks in [27], e.g., about 60 blocks instead of 254 for SHA-1.

We also consider ways to improve one of the basic steps in long-message second-preimage attacks. In all
previous results [16, 27, 38], as well as in ours, there is a step of the attack trying to connect to the chaining values
of the target message. We show how to perform the connection using time-memory data tradeoff techniques. This
approach reduces the online phase of the connection from 2n−κ time to 22(n−κ)/3 using 2n−κ precomputation
and 22(n−κ)/3 auxiliary memory. Moreover, using this approach, one can apply the second-preimage attack for
messages of lengths shorter than 2κ in time which is faster than 2n−λ for a 2λ-block message. For example, for some
reasonable values of n and κ, it is possible to produce second-preimages for messages of length 2n/4, in O

(
2n/2

)
online time (after a O

(
23n/4

)
precomputation) using O

(
2n/2

)
memory. In other words, after a precomputation

which is equivalent to finding a single second preimage, the adversary can generate second preimages at the same
time complexity as finding a collision in the compression function.

An important target of our new attack is the “dithered” Merkle-Damgård hash variant of [43]. For such hash
functions, we exploit the short patch and the existence of repetitions in the dithering sequences. Namely, we show
that the security of the dithered Merkle-Damgård hash function depends on the min-entropy of the dithering
sequence, and that the sequence chosen by [43] is susceptible to our attack. For example, against the proposed
16-bit dithering sequence, our attack requires 2(n+`)/2+2 +2n−κ+15 +2n−` work (for ` < 213), which for SHA-1 is
approximately 2120. This is worse than the attacks against the basic Merkle-Damgård construction but it is still
far less than the ideal 2160 second-preimage resistance expected from the dithered construction.

We further show the applicability of our attack to the universal one way hash function designed by Shoup [46],
which exhibits some similarities with dithered hashing. The attack applies as well to constructions that derive
from this design, e.g., ROX [2]. Our technique yields the first published attack against these particular hash
functions and confirms that Shoup’s and ROX security bounds are tight, since there is asymptotically only a
logarithmic factor (namely, O (log(κ))) between the lower bounds given by their security proofs and our attack’s
complexity. To meet this end, we introduce the multi-diamond attack, which is a new tool that can handle more
dithering sequences.

As part of our analysis of dithering sequences, we present a novel cryptographic tool — the kite generator.
This tool can be used for long message second-preimage attacks for any dithering sequence over a small alphabet
(even if the exact sequence is unknown during the precomputation phase).

We follow by presenting second-preimage attacks on tree hashes [39]. The naive version of the attack allows
finding a second-preimage of a 2κ-block message in time 2n−κ+1. We further time-memory-data tradeoff variant
with time and memory complexities of 22(n−κ+1) = TM2, where T is the online time complexity and M is the
memory (as long as T ≥ 22κ).

Finally, we show that both the original second-preimage attacks of [16, 27] and our attacks can be extended
to the case in which there are multiple target messages. We show that finding a second-preimage for any one of
2t target messages of length 2κ blocks each requires approximately the same work as finding a second-preimage
for a message of 2κ+t blocks.

1.2 Organization of the Paper

We describe our new second-preimage attack against the Merkle-Damgård construction in Section 2. In Section 3
we explore the use of time-memory-data tradeoff techniques in the connection step which is used in all long-message

second-preimage attacks and discuss second-preimage attacks on tree hashes. We introduce some terminology and
describe the dithered Merkle-Damgård construction in Section 4, and then we extend our attack to tackle the
dithered Merkle-Damgård proposals of Rivest in Section 5. We then offer a series of more general cryptanalytic
tools that can attack more types of dithering sequences in Section 6. In Section 7, we show that our attacks work
also against Shoup’s UOWHF construction (and its derivatives). We conclude with Section 8 showing how to
apply second-preimage attacks on a large set of target messages.

2 A New Generic Second-Preimage Attack

2.1 The Merkle-Damgård construction

We first describe briefly the strengthened Merkle-Damgård construction Hf : {0, 1}∗ → {0, 1}n, which is built
by iterating a compression function f : {0, 1}n × {0, 1}m → {0, 1}n. To hash a message m apply the following
process:

– Pad and split the message M into r blocks x1, . . . , xr of m bits each.
– Set h0 to the initialization value IV .
– For each message block i compute hi = f (hi−1, xi).
– Output Hf (M) = hr.

Throughout the paper we shall use T = {hi} to denote the set of all chaining values encountered while hashing
the message m.

The common padding rule (referred to as the Merkle-Damgård strengthening) appends to the original message
a single ’1’ bit followed by as many ’0’ bits as needed to complete an m-bit block after embedding the message
length at the end. Merkle [39] and Damgård [12] proved independently that the scheme is collision-resistance
preserving, in the sense that a collision on the hash function Hf implies a collision on the compression function f .
As a side effect, the strengthening used defines a limit on the maximal length for admissible messages. In most
deployed hash functions, this limit is 264 bits, or equivalently 255 512-bit blocks. In the sequel, we denote the
maximal number of admissible blocks by 2κ.

2.2 Our Second-Preimage Attack on Merkle-Damgård hash

Our new technique to find second-preimages on Merkle-Damgård hash functions relies heavily on the diamond
structure introduced by Kelsey and Kohno [26].

Diamond Structure: A diamond structure of size ` is a multicollision with the shape of a complete bineary
tree of depth ` with2` leaves denoted by ĥi (hence we often refer to it as a collision tree). The tree nodes are
labeled by the n-bit chaining values, and the edges are labeled by the m-bit message blocks. A message block is
mapped between two evolving states of the chaining value by the compression function f . Thus, there is a path
labeled by the ` message blocks from any one of the 2` starting leaf nodes that leads to the same final chaining
value ĥ� at the root of the tree. We illustrate the diamond structure in Figure 1.

ĥ1

ĥ2

ĥ3

ĥ4

ĥ2` m2`

m1

ĥ�

Fig. 1. A Diamond Structure

Algorithm 1 Our New Attack Algorithm on Standard Merkle-Damgård Hash Functions

1. Construct a collision tree of depth ` with a final chaining value at the root ĥ�.
2. Try random message blocks B, until f

(
ĥ�, B

)
∈ T . 2 Let B↘ be the message block and let f

(
ĥ�, B

↘
)
= hi0 for some

i0, `+ 1 ≤ i0 <
∣∣M ∣∣.

3. Pick a prefix P of size i0 − ` − 2 blocks, and let hP be the chaining value obtained after processing P by the hash
function. Try random message blocks B, until f (hP , B) = ĥj for some ĥj labeling a leaf of the diamond. Let B↗

denote this block, and let T be the chain of ` blocks traversing the diamond from ĥj to ĥ�.
4. Form a message M ′ = P ||B↗||T ||B↘||M≥i0+1.

The Attack: To illustrate our new second-preimage attack, let M be a target message of length 2κ blocks. The
main idea of our attack is that connecting the target message to a precomputed collision tree of size ` can be done
with 2n−` computations. Moreover, connecting the root of the tree to one of the 2κ chaining values encountered
during the computation of Hf (M) takes only 2n−κ compression function calls. Since a diamond structure can be
computed in time much less than 2n, we can successfully launch a second-preimage attack. The attack works in
four steps as described in Algorithm 1 (and depicted in Figure 2).

The messagesM ′ andM are of equal length and hash to the same value before strengthening, so they produce
the same hash value with the added Merkle-Damgård strengthening.

Our new second-preimage attack applies identically to other Merkle-Damgård based constructions, such as
prefix-free Merkle-Damgård [10], randomized hash [20], Enveloped Merkle-Damgård [3], etc. Keyed hash con-
structions like the linear and the XOR linear hash by [4] use unique per message block key, which foils this style
of attacks in the connection step (as well as the attack of [27]).

Complexity. The first step allows for precomputation and its time and space complexity is about 2(n+`)/2+2

(see [26]). The second step of the attack is carried out online with 2n−κ work, and the third step takes 2n−` work.
The total time complexity of the attack is then 2(n+`)/2+2 precomputation and 2n−κ +2n−` online computations
and their sum is minimal when ` = (n− 4)/3 for a total of about 5 · 22n/3 + 2n−κ computations.

2 Recall that T contains the chaining values encountered while hashing the target message m.

ĥ�

x1

x3

x4

x2

x5

x6

` blocks

IV
hi0

H(M)
M

B↘

M≥i0

hP

P

B↗

f
(
ĥ�, B

↘
)
= hi0

f
(
hP , B

↗) = ĥj

Fig. 2: Representation of Our New Attack on Standard Merkle-Damgård.

2.3 Attack Variants on Strengthened Merkle-Damgård

Variant 1: The above algorithm allows connecting in the third step of the attack only to the 2` chaining values
at the first level of the diamond structure. It is possible, however, to use all the 2`+1 − 1 chaining values in the
diamond structure by appending to h� a short expandable message of lengths between log2(`) and `+log2(`)− 1.
Thus, once the prefix P is connected to some chaining value in the diamond structure, it is possible to extend the
length of the patch to be of a fixed length (as required by the attack). This variant requires slightly more work
in the precomputation step and a slightly longer patch (of log2(`) more blocks). The offline computation cost is
about 2(n+`)/2+2+log2(`) ·2n/2+1+` ≈ 2(n+`)/2+2, while the online computation cost is reduced to 2n−`−1+2n−κ

compression function calls.

Variant 2: A different variant of the attack suggests constructing the diamond structure by reusing the chaining
values of the target messageM as starting points. Here the diamond structure gets computed in the online phase.
In this variant, the herding step becomes more efficient, as there is no need to find a block connecting to the
diamond structure. In exchange, we need an expandable message at the output of the diamond structure (i.e.,
starting from h�). The complexity of this variant is 2(n+κ)/2+2 +2n−κ+ κ · 2n/2+1 +2κ ≈ 2(n+κ)/2+2 +2n−κ+2κ

online compression function calls (note that 2κ is also the size of the diamond structure).

2.4 Comparison with Dean [16] and Kelsey and Schneier [27]

The attacks of [16, 27] are slightly more efficient than ours. We present the respective offline and online complexities
for these previous and our new attack in Table 1 and the comparison of these attacks for MD5 (n = 128, κ = 55),
SHA-1 (n = 160, κ = 55), SHA-256 (n = 256, κ = 118), and SHA-512 (n = 512, κ = 118) in Table 2. Still, our
technique gives the adversary more control over the second-preimage. For example, she could choose to reuse
most of the target message, leading to a second preimage that differs from the original by only `+ 2 blocks.

Attack Complexity Avg. Patch Message
Offline Online Memory Size Length

Dean [16]? 2n/2+1 2n−κ 2 2κ−1 2κ

Kelsey-Schneier [27] κ · 2n/2+1 + 2κ 2n−κ 2 · κ 2κ−1 2κ

New 2(n+`)/2+2 2n−` + 2n−κ 2`+1 `+ 2 2κ

Variant 1 2(n+`)/2+2 2n−`−1 + 2n−κ 2`+1 + 2 · log2(`) `+ log2(`) + 2 2κ

Variant 2 — 2(n+κ)/2+2 + 2n−κ+ 2(n+κ)/2 + 2κ+1 2κ−1 2κ

2κ

First connection with 2(n+`)/2+2 + 2n−λ 2n−` + 22λ 2`+1 + 2n−2λ `+ 2 2λ

with TMDTO (Sect. 3.2)
? — This attack assumes the existence of easily found fixed points in the compression function

Table 1. Comparison of Long Message Second-Preimage Attacks

The main difference between the older techniques and ours is that the previous attacks build on the use of
expandable messages. We note that our attack just offers a short patch. At the same time, our attack can also be
viewed as a new, more flexible technique to build expandable messages, by choosing a prefix of the appropriate
length and connecting it to the collision tree. This can be done in time 2(n+`)/2+2 + 2n−`. Although it is more
expensive, this new technique can be adapted to work even when an additional dithering input is given, as we
demonstrate in Section 5.

3 Time-Memory-Data Tradeoffs for Second-Preimage Attacks

In this section we discuss the first connection step (from the diamond structure to the message) and we show that
it can be implemented using time-memory-data tradeoff. This allows speeding up the online phase in exchange
for an additional precomputation and memory. An additional and important advantage is our ability to find
second-preimages of significantly shorter messages. These ideas can also be used to offer second-preimage attacks
on tree hashes.

3.1 Hellman’s Time-Memory Tradeoff Attack

Time-memory Tradeoff attacks (TMTO) were first introduced in 1980 by Hellman [21]. The idea is to improve
brute force attacks by trading the online time for memory and precomputation when inverting a function f :
{0, 1}n → {0, 1}n. Suppose we have an image element y and we wish to find a pre-image x ∈ f−1(y). One extreme
would be to go over all possible elements x until we find one such that f(x) = y, while the other extreme would be
to precompute a huge table containing all the pairs (x, f(x)) sorted by the second element. Hellman’s idea is to
consider what happens when applying f iteratively. We start at a random element x0 and compute xi+1 = f(xi)
for t steps saving only the start and end points of the generated chain (x0, xt). We repeat this process with
different initial points and generate a total of c chains. Given an input y, we start generating a chain starting
from y and checking if we reached one of the saved endpoints. If we have, we generate the corresponding chain,
starting from the suggested starting point and hope to find a preimage of y. Notice that as the number of chains,
c, increases beyond 2n/t2, the contribution (i.e., the number of new values that can be inverted) from additional
chains decreases. To counter this birthday paradox effect, Hellman suggested to construct a number of tables,

Function MD5 SHA-1 SHA-256 SHA-512
(n, κ) (128,55) (160,55) (256,118) (512,118)

Dean [16] Offline: 265 281 2129 2257

Online: 273 2105 2138 2394

Memory: 2 2 2 2
Patch Length: 254 254 2117 2117

Kelsey-Schneier [27] Offline: 271 287 2136 2264

Online: 273 2105 2138 2394

Memory: 110 110 234 234
Patch Length: 254 254 2117 2117

New Offline: 293.5 2109.5 2189 2317

Online: 274 2106 2139 2395

Memory: 256 256 2119 2119

Patch Length: 57 57 120 120
Variant 1 Offline: 293 2109 2188.5 2316.5

Online: 274 2106 2139 2395

Memory: 255 255 2118 2118

Patch Length: 62 62 126 126
Variant 2 Online: 287.7 2109 2173 2394

Memory: 284.7 2106 2170 2315

Patch Length: 240.3 251 283 2117

Length?: 241.3 252 284 2118

First connection Offline: 298.3 2122.3 2194.3 2394

with TMDTO Online: 265 281 2129 2257

(setting online Memory: 265.6 281.6 2129.6 2257.6

time equal to Patch Length: 66 82 130 258
memory) Length?: 232 240 264 2118

Memory, patch length, and message lengths are measured in blocks.
? — Length is given for cases where messages shorter than 2κ can be used

without effect on the time complexities.

Table 2. Comparison of the long-message second-preimage attacks on real hash functions (optimized for minimal online
complexity)

each using a slightly different function fi, such that knowing a preimage of y under fi implies knowing such a
preimage under f . Hellman’s original suggestion, which works well in practice, is to use fi(x) = f(x ⊕ i). Thus,
if we create d = 2n/3 tables each with different fi’s, such that each table contains c = 2n/3 chains of length
t = 2n/3, about 80% of the 2n points will be covered by at least one table. Notice that the online time complexity
of Hellman’s algorithm is t · d = 22n/3 while the memory requirements are d · c = 22n/3.

It is worth mentioning, that when multiple targets are given for inversion (i.e., a set of possible targets
yi = f(xi)), where it is sufficient to identify only one of the preimages (xi for some i), one could offer better
tradeoff curves. For example, given m possible targets, it is possible to reduce the number of tables stored by
a factor of m, and trying for each of the possible targets, the attack (i.e., apply the chain). This reduces the
memory complexity (without affecting the online time complexity or the success rate), as long as m ≤ d (see [7]
for more details concerning this constraint).

3.2 Time-Memory-Data Tradeoffs for Merkle-Damgård Second-Preimage Attacks

Both known long-message second-preimage attacks and our newly proposed second-preimage attack assume that
the target message is long enough (up to the 2κ limit). This enables the connection to the target message (namely,
finding B↘) to be done with complexity of about 2n−κ compression function calls. In our new second preimage
attack we also have a second connection phase: connecting from the message into the diamond structure (Step 3
of Alg. 1). In principle, both connection steps can be seen as finding the inverse of a function. Luckily, we can
improve the first connection (which is common to all attacks) by using a time-memory-data tradeoff. The result
of the tradeoff is that after a precomputation whose complexity is essentially that of finding a second preimage,
the cost of finding subsequent second preimages becomes essentially that of finding collisions.

Recall that we search for a message block m such that f(h�,m) = hi. As there are 2κ targets (and finding
the preimage of only one hi’s is sufficient), then we can run a time-memory-data tradeoff attack with a search
space of N = 2n, and D = 2κ available data points, time T , and memory M such that N2 = TM2D2, after
P = N/D preprocessing (and T ≥ D2). Let 2x be the online complexity of the time-memory-data tradeoff, and
thus, 2x ≥ 22κ, and the memory consumption is 2n−κ−x/2 blocks of memory. The resulting overall complexities
are: 2n/2+`/2+2 +2n−κ preprocessing, 2x +2n−` online complexity, and 2`+1 +2n−κ−x/2 memory, for messages of
2x/2 blocks.

Given the constraints on the online complexity (i.e., x ≥ 2κ), it is sometime beneficial to consider shorter
messages, e.g., of 2λ blocks (for λ ≤ κ). For such cases, the offline complexity is 2n/2+`/2+2 + 2n−λ, the online
complexity is 2x + 2n−`, and the memory consumption being 2n−λ−x/2 + 2`+1. We can balance the online and
memory complexities (as commonly done in time-memory-data tradeoff attacks), which results in picking x such
that 2x + 2n−` ≈ 2n−λ−x/2 + 2`+1. By picking λ = n/4, x = 2λ = n/4, and ` = n/2, the online complexity is
2n/2+1, the memory complexity is 3 · 2n/2, and the offline complexity is 5 · 23n/4. This of course holds as long as
n/4 = λ ≤ κ, i.e., 4κ > n.

When 4κ < n, we can still balance the memory and the online computation by picking T = 2n/2 and ` = n/2.
The memory consumption of this approach is still O

(
2n/2

)
, and the only difference is the preprocessing which

increases to 2n−κ.
For this choice of parameters, we can find a second-preimage for a 240-block long message in SHA-1, with online

time of 281 operations, 281.6 blocks of memory, and 2122.2 steps of precomputation. The equivalent Kelsey-Schneier
attack takes 2120 online steps (and about 285.3 offline computation).

One may consider comparison with a standard time-memory attack for finding preimages.3 For an n-bit
digests, for 2n preprocessing, one can find a (second-) preimage using time 2x and memory 2n−x/2. Hence, for the
same 240-block message, with 281.6 blocks of memory, the online computation is about 2156.8 SHA-1 compression
function calls.

3.3 Time-Memory-Data Tradeoffs for Tree Hashes Second-Preimage Attacks

Another structure which is susceptible to the time-memory-data connection phase is tree hashes. Before describing
our attacks, we give a quick overview of tree hashes.

Tree Hashes. Tree hashes were first suggested in [39]. Let f : {0, 1}n × {0, 1}n → {0, 1}n be a compression
function used in the tree hash Tf . To hash a message M of length |M | < 2n, M is initially padded with a single

3 An attack that tries to deal with the multiple targets has to take care of the padding, which can be done by just starting
from an expandable message. In other words, this is equivalent to using our new connection step in the Kelsey-Schneier
attack.

‘1’ bit and as many ‘0’ bits as needed to obtain padTH(M) = m1‖m2‖ . . . ‖mL, where each mi is n-bit long,
L = 2κ for κ = dlog2(|M | + 1)/ne. Consider the resulting message blocks as the leaves of a full binary tree of
depth κ. Then, the compression function is applied to any two leaves with a common ancestor, and its output is
assigned to the common ancestor. This procedure is followed in an iterative manner. A final compression function
is applied to the output of the root and an extra final strengthening block, normally containing the length of the
input message M . The resulting output is the final tree hash.

Formally, the tree hash function Tf (M) is defined as:

1. m1‖m2‖ . . . ‖mL ← padTH(M)
2. For j = 1 to 2κ−1 compute h1,j = f(m2j−1,m2j)
3. For i = 2 to κ:

– For j = 1 to 2κ−i compute hi,j = f(hi−1,2j−1, hi−1,2j)

4. Tf (M) , hκ+1 = f(hκ,1, 〈|M |〉n).

A Basic Second-Preimage Attack on Tree Hashes. Tree hashes that apply the same compression function
to each message block (i.e., the only difference between f(m2i−1,m2i) and f(m2j−1,m2j) for i 6= j is the position
of the resulting node in the tree) are vulnerable to a long-message second-preimage attack where the change is in
at most two blocks of the message.

Recall that h1,j = f(m2j−1,m2j) for j = 1 to 2κ−1 for a messageM of length 2κ blocks. Then, given the target
message M , there are 2κ−1 chaining values h1,j that can be targeted.4 An adversary that inverts one of these
chaining values, i.e., produces (m′,m′′) such that f(m′,m′′) = h1,j for some 1 ≤ j ≤ 2κ−1, computes successfully
a second-preimage M ′. Thus, a long-message second-preimage attack on message of length 2κ requires about
2n−κ+1 trial inversions for f(·).

More precisely, the adversary just tries message pairs (m′,m′′), until f(m′,m′′) = h1,j for some 1 ≤ j ≤ 2κ−1.
Then, the adversary replaces (m2j−1||m2j) with m′||m′ without affecting the computed hash value for M . Note
that the number of modified message blocks is only two. This result also applies to other parallel modes where
the exact position has no effect on the way the blocks are compressed.

Getting More for Less As can be seen, the previous attack tries to connect only to the first level of the tree.
This fact stems from the fact that in order to connect to a higher level in the tree, one needs the ability to replace
the subtree below the connection point.

Assuming that f is random enough, we can achieve this, by building the queries carefully. Consider the case
where the adversary computes n1 = f(m′1,m

′
2) and n2 = f(m′3,m

′
4), for some message blocks m′1, . . . ,m′4. If

neither n1 nor n2 are equal to some h1,j , we can compute o1 = f(n1, n2). Now, if o1 = h1,j for some j, we can
offer a second preimage as before (replacing the corresponding message blocks by (n1, n2)). At the same time, if
o1 = h2,j for some j, we can replace the four message blocks m4j−3, . . . ,m4j with m′1, . . . ,m′4. The probability of
a successful connection is thus 3 · 2κ−1−n + 2κ−2−n = 3.5 · 2κ−1−n for 3 compression function calls (rather than
the expected 3 · 2κ−1−n).

One can extend this approach, and try to connect to the third layer of the tree. This can be done by generating
o2 using four new message blocks, and if their connection fails, compute f(o1, o2) and trying to connect it the
first three levels of the tree. Hence, for a total of 7 compression function calls, we expect a success probability of
2 · 3.5 · 2κ−1−n + 2κ−1−n + 2κ−2−n + 2κ−3−n = 8.75 · 2κ−1−n.
4 We note that the number of possible locations for connection is 2κ−1 even if there are more compression function calls.
This follows from the fact that the length of the second-preimage must be the same as for the original message, and
thus, it is impossible to connect to a chaining value in the padding.

This approach can be further generalized, each time increasing the depth of the subtree which is replaced (up
to κ). If the number of compression function calls needed to generate a subtree of depth t is Nt = 2t − 1 and the
probability of successful connection is pt, then pt follows the recursive formulas of:

pt+1 = 2pt +

t+1∑
i=1

2κ−i−n,

where p1 = 2κ−1−n. The time complexity advantage of this approach is pt+1/(Nt · 2κ−1−n), as for the basic
algorithm, after Nt compression function calls, the success rate is Nt · 2κ−1−n. Now, as pt+1 < 2pt + 2 · 2κ−1−n,
it is possible to upper bound pκ by 2 + 4 · 2κ−1, meaning that this attack is at most twice as fast as the original
attack presented above.

The main drawback of this approach is the need to store the intermediate chaining values produced by the
adversary. For a subtree of depth t, this sums up to 2t+1 − 1 blocks of memory.

We notice that the utility of each new layer decreases. Hence, we propose a slightly different approach, where
the utility is better. The improved variant starts by computing n1 = f(m′1,m

′
2) and n2 = f(m′3,m

′
4). At this point,

the adversary computes 4 new values — f(n1, n1), f(n1, n2), f(n2, n1), and f(n2, n2). For these 6 compression
function calls, the adversary has a probability of 6 · 2κ−1−n + 4 · 2κ−2−n = 8 · 2κ−1−n chance of connecting
successfully to the message (either at the first level or the second level for the four relevant values). It is possible
to continue this approach, and obtain 16 chaining values that can be connected in the first, second, or third levels
of the tree.

This approach yields the same factor 2 improvement in the total time complexity with less memory, and with
less restrictions on κ, namely, to obtain the full advantage, log2(n) levels in the tree are needed (to be compared
with n levels in the previous case).

Applying Time-Memory-Data Tradeoffs. As in the Merkle-Damgård second-preimage attacks, we model
the inversion of f as a task for a time-memory-data attack [7]. The h1,j values are the multiple targets, which
compose the available data points D = 2κ−1. Using the time-memory-data curve of the attack from [7], it is
possible to have an inversion attack which satisfy the relation N2 = TM2D2, where N is the size of the output
space of f , T is the online computation, and M is the number of memory blocks used to store the tables of the
attack. As N = 2n, we obtain that the curve for this attack is 22(n−κ+1) = TM2 (with preprocessing of 2n−κ+1).
We note that the tradeoff curve can be used as long as M < N,T < N, and T ≥ D2. Thus, for κ < n/3, it is
possible to choose T = M , and obtain the curve T = M = 22(n−κ+1)/3. For n = 160 with κ = 50, one can apply
the time-memory-data tradeoff using 2110 preprocessing time and 274 memory blocks, and find a second-preimage
in 274 online computation.

4 Dithered Hashing

The general idea of dithered hashing is to perturbate the hash process by using an additional input to the
compression function, formed by the consecutive elements of a fixed dithering sequence. This gives the adversary
less control over the inputs of the compression function, and makes the hash of a message block dependent on its
position in the whole message.

The ability to “copy, cut, and paste” blocks of messages is a fundamental ingredient in many generic attacks,
including for example the construction of expandable messages of [27] or of the diamond structure of [26]. To
prevent such generic attacks, the use of some kind of dithering is now widely adopted, e.g., in the two SHA-3
finalists Blake and Skein.

Since the dithering sequence z has to be at least as long as the maximal number of blocks in any message that
can be processed by the hash function, it is reasonable to consider infinite sequences as candidates for z. Let A
be a finite alphabet, and let the dithering sequence z be an eventually infinite word over A. Let z[i] denote the
i-th element of z. The dithered Merkle-Damgård construction is obtained by setting hi = f (hi−1, xi, z [i]) in the
definition of the Merkle-Damgård scheme.

We demonstrate that the gained security (against our attack) of the dithering sequence is equal to its min-
entropy of z. This implies that to offer a complete security against our attacks, the construction must use a
dithering sequence which contains as many different dithering inputs as blocks, e.g., like suggested in HAIFA.

4.1 Background and Notations

Words and Sequences. Let ω be a word over a finite alphabet A. We use the dot operator to denote concate-
nation. If ω can be written as ω = x.y.z (where x,y, or z can be empty), we say that x is a prefix of ω and that
y is a factor of ω. A finite non-empty word ω is a square if it can be written as ω = x.x, where x is not empty. A
finite word ω is an abelian square if it can be written as ω = x.x′ where x′ is a permutation of x (i.e., a reordering
of the letters of x). A word is said to be square-free (respectively, abelian square-free) if none of its factors is a
square (respectively, an abelian square). Note that abelian square-free words are also square-free.

Sequences Generated by Morphisms. We say that a function τ : A∗ → A∗ is a morphism if for all words
x and y, τ(x.y) = τ(x).τ(y). A morphism is then entirely determined by the images of the individuals letters. A
morphism is said to be r-uniform (with r ∈ N) if for any word x, |τ(x)| = r · |x|. If, for a given letter α ∈ A, we
have τ(α) = α.x for some word x, then τ is non-erasing for α. Given a morphism τ and an initialization letter α,
let un denote the n-th iterate of τ over α: un = τn(α). If τ is r-uniform (with r ≥ 2) and non-erasing for α, then
un is a strict prefix of un+1, for all n ∈ N. Let τ∞(α) denote the limit of this sequence: it is the only fixed point
of τ that begins with the letter α. Such infinite sequences are called uniform tag sequences [9] or r-automatic
sequences [1].

An Infinite Abelian Square-Free Sequence. Infinite square-free sequences have been known to exist since
1906, when Axel Thue exhibited the Thue-Morse word over a ternary alphabet (there are no square-free sequences
longer than four on a binary alphabet).

The question of the existence of infinite abelian square-free sequences was raised by 1961 by Erdös, and was
solved by Pleasants [42] in 1970: he exhibited an infinite abelian square-free sequence over a five-letter alphabet.
In 1992, Keränen [28] exhibited an infinite abelian square-free sequence k over a four-letter alphabet (there are no
infinite abelian square-free words over a ternary alphabet). In this paper, we call this infinite abelian square-free
word the Keränen sequence. Before describing it, let us consider the permutation σ over A defined by:

σ(a) = b, σ(b) = c, σ(c) = d, σ(d) = a

Surprisingly enough, the Keränen sequence is defined as the fixed point of a 85-uniform morphism τ , given
by:

τ(a) = ωa, τ(b) = σ (ωa) , τ(c) = σ2 (ωa) , τ(d) = σ3 (ωa) ,

where ωa is some magic string of size 85 (given in [28, 43]).

Sequence Complexity. The number of factors of a given size of an infinite word gives an intuitive notion of its
complexity : a sequence is more complex (or richer) if it possesses a large number of different factors. We denote
by Factz(`) the number of factors of size ` of the sequence z.

Because they have a very strong structure, r-uniform sequences have special properties, especially with regard
to their complexity:

Theorem 1 (Cobham, 1972, [9]). Let z be an infinite sequence generated by an r-uniform morphism, and
assume that the alphabet size

∣∣A∣∣ is finite. Then z has linear complexity bounded by:

Factz(`) ≤ r · |A|2 · `.

A polynomial algorithm which computes the exact set of factors of a given length ` can be deduced from
the proof of this theorem. It is worth mentioning that similar results exist in the case of sequences generated
by non-uniform morphisms [17, 41], although the upper bound can be quadratic in `. The bound given by this
theorem, although attained by certain sequences, is relatively rough. For example, since the Keran̈en sequence is
85-uniform, the theorem gives: Factk(`) ≤ 1360 · `. For ` = 50, this gives Factk(50) ≤ 68000, while the factor-
counting algorithm reveals that Factk(50) = 732. Hence, for small values of `, the following upper bound may be
tighter:

Lemma 1. Let z be an infinite sequence over the alphabet A generated by an r-uniform morphism τ . For all `,
1 ≤ ` ≤ r, we have :

Factz(`) ≤ ` ·
(
Factz(2)− |A|

)
+
[
(r + 1) · |A| − Factz(2)

]
.

Proof. If ` ≤ r, then any factor of z of size ` falls in one of these two classes:

– Either it is a factor of τ(α) for some letter α ∈ A. There are no more than |A| · (r − `+ 1) such factors.
– Or it is a factor of τ(α).τ(β), for two letters α, β ∈ A (and is not a factor of either τ(α) or τ(β)). For any

given pair (α, β), there can only be `− 1 such factors. Moreover, α.β must be a factor of size 2 of z.

So Factz(`) ≤ |A| · (r − `+ 1) + Factz(2) · (`− 1). ut

For the particular case of the Keränen sequence k, we have r = 85,
∣∣A∣∣ = 4 and Factk(2) = 12 (all non-

repeating pairs of letters). This yields Factk(`) ≤ 8 · ` + 332 when ` ≤ 85, which is tight, as for ` = 50 it gives:
Factk(50) ≤ 732.

Factor Frequency. Our attacks usually target the factor of highest frequency. If the frequency of the various
factors is biased, i.e., non uniform, then the attack should exploit this bias (just like in any cryptographic attack).

Formally, let us denote by Nω(x) the number of occurrences of ω in x (which is expected to be a finite word),
and by z[1..i] the prefix of z of size i. The frequency of a given word ω in the sequence z is the limit of Nω(z[1..i])/i
when i goes to +∞.

We denote by 2−H∞(z,`) the frequency of the most frequent factor of length ` in the sequence z. It follows
immediately that H∞(z, `) ≤ log2 Factz(`). Hence, when the computation of H∞(z, `) is infeasible, log2 Factz(`)
can be used as an upper-bound.

It is possible to determine precisely the frequency of certain words in sequences generated by uniform mor-
phisms. For instance, it is easy to compute the frequency of individual letters: if x is some finite word and α ∈ A,
then by definition of τ we find:

Nα (τ (x)) =
∑
β∈A

Nα (τ (β)) ·Nβ (x) (1)

In this formula, Nα(τ(β)) is easy to determine from the description of the morphism τ . Let us write:

A = {α1, . . . , αk} ,

Us =

(
Nαj (τ

s (a))

`s

)
1≤j≤|A|

,

M =

(
Nαi(τ(αj))

`

)
1≤i,j≤|A|

.

Then it follows from equation (1) that:
Us+1 =M · Us.

The frequency of individual letters is given by the vector U∞ = lims→∞ Us. Fortunately, this vector lies in
the kernel of M − 1 (and is such that its component sum up to one). For instance, for the Keränen sequence, and
because of the very symmetric nature of τ , we find that M is a circulant matrix:

85 ·M =

19 18 27 21
21 19 18 27
27 21 19 18
18 27 21 19

We quickly obtain: U∞ = 1

4 (1, 1, 1, 1), meaning that no letter occurs more frequently than the other — as
can be expected. The frequencies of digrams (i.e., two-letters words) are slightly more complicated to compute,
as the digram formed from the last letter of τ(α) and the first letter of τ(β) is automatically a factor of τ(αβ)
but is not necessarily a factor of either τ(α) or τ(β) individually. We therefore need a new version of equation (1)
that takes this fact into account.

Let us define Ω2 = {ω1, . . . , ωr}, the set of factors of size two of z. If ω is such a factor, we obtain:

Nω (τ (x)) =
∑
γ∈A

Nω (τ (γ)) ·Nγ (x) +
∑
ωj∈Ω2

[
Nω (τ (ωj))−Nω (τ (ωj [1]))−Nω (τ (ωj [2]))

]
·Nωj (x) (2)

Again, in order to obtain a system of linear relations, we define:

Vs =

(
Nωi (τ

s (a))

`s

)
1≤i≤|Ω2|

,

M1 =

(
Nωi (τ (αj))

`

)
1≤i≤|Ω2|,1≤j≤|A|

,

M2 =

(
Nωi (τ (ωj))−Nωi (τ (ωj [1]))−Nωi (τ (ωj [2]))

`

)
1≤i,j≤|Ω2|

,

and equation (2) implies:
Vs+1 =M1 · Us +M2 · Vs

Again, we are interested in the limit V∞ of Vs when s goes to infinity, and this vector is a solution of the equa-
tion: V∞ =M2 ·V∞+M1 ·U∞. For the Keränen sequence k, where Ω2 = {ab, ac, ad, ba, bc, bd, ca, cb, cd, da, db, dc},
we observe that:

85 ·M1 =

6 3 9 9
8 5 8 5
4 10 10 7
7 4 10 10
9 6 3 9
5 8 5 8
8 5 8 5
10 7 4 10
9 9 6 3
3 9 9 6
5 8 5 8
10 10 7 4

Because the magic string that defines the Keränen sequence begins and ends with an “a”, the digram formed

by the last letter of τ(α) and the first letter of τ(β) is precisely α.β. Thus, M2 is in fact 1/85 times the identity
matrix. We thus compute V∞, to find that:

Factor ab ac ad ba bc bd ca cb cd da db dc
Frequency 9

112
13
168

31
336

31
336

9
112

13
168

13
168

31
336

9
112

9
112

13
168

31
336

Here, a discrepancy is visible, with “ba” being nearly 15% more frequent than “ab”. Computing the frequency
of factors of size less than ` is not harder, and the reasoning for factors of size two can be used as-is. In fact,
equation (2) holds even if ω is a factor of z of size less than `. Let us define:

S =

(
Nω (τ (αj))

`

)
1≤j≤|A|

,

T =

(
Nω (τ (ωj))−Nω (τ (ωj [1]))−Nω (τ (ωj [2]))

`

)
1≤j≤|Ω2|

.

Equation (2) then brings:
Nω
(
τs+1 (a)

)
`s+1

= S · Us + T · Vs

And the frequency of ω in z is then S ·U∞+T ·V∞. The frequency of any word could be computed using this
process recursively, but we will conclude here, as we have set up the machinery we need later on.

4.2 Rivest’s Dithered Proposals

Keränen-DMD. In [43] Rivest suggests to directly use the Keränen sequence as a source of dithering inputs. The
dithering inputs are taken from the alphabet A = {a, b, c, d}, and can be encoded by two bits. The introduction
of dithering thus only takes two bits from the input datapath of the compression function, which improves the
hashing efficiency (compared to longer encodings of dithering inputs). We note that the Keränen sequence can be
generated online, one symbol at a time, in logarithmic space and constant amortized time.

Rivest’s Concrete Proposal. To speed up the generation of the dithering sequence, Rivest proposed a slightly
modified scheme, in which the dithering symbols are 16-bit wide. Rivest’s concrete proposal, which we refer to as
DMD-CP (Dithered Merkle-Damgård – Concrete Proposal) reduces the need to generate the next Keränen letter.
If the message M is r blocks long, then for 1 ≤ i < r the i-th dithering symbol has the form:(

0,k
[⌊
i/213

⌋]
, i mod 213

)
∈ {0, 1} × A× {0, 1}13

The idea is to increment the counter for each dithering symbol, and to shift to the next letter in the Keränen
sequence, only when the counter overflows. This “diluted” dithering sequence can essentially be generated 213

times faster than the Keränen sequence. Finally, the last dithering symbol has a different form (recall that m is
the number of bits in a message block):

(1, |M | mod m) ∈ {0, 1} × {0, 1}15

5 Second-Preimage Attacks on Dithered Merkle-Damgård

In this section, we present the first known second-preimage attack on Rivest’s dithered Merkle-Damgård con-
struction. We first introduce the adapted attack in Section 5.1, and present the novel multi-diamond construction
in Section 5.2 that offers a better attack on dithered Merkle-Damgård. In section 5.3, we adapt the attack of
section 2 to Keränen-DMD, obtaining second-preimages in time 732 · 2n−κ + 2(n+`)/2+2 + 2n−`. We then apply
the extended attack to DMD-CP, obtaining second-preimages with about 2n−κ+15 evaluations of the compres-
sion function. We then show some examples of sequences which make the corresponding dithered constructions
immune to our attack.

5.1 Adapting the Attack to Dithered Merkle-Damgård

Let us now assume that the hashing algorithm uses a dithering sequence z. When building the collision tree, we
must choose which dithering symbols to use. A simple solution is to use the same dithering symbol for all the
edges at the same depth in the tree, as shown in Figure 3. A word of ` letters is then required for building the
collision tree. We also need an additional letter to connect the collision tree to the message M . This way, in order
to build a collision tree of depth `, we have to fix a word ω of size `+1, use ω[i] as the dithering symbol of depth
i, and use the last letter of ω to realize the connection to the given message.

The dithering sequence makes the hash of a block dependent on its position in the whole message. Therefore,
the collision tree can be connected to its target only at certain positions, namely, at the positions where ω and z
match. The set of positions in the message where this is possible is then given by:

Range =
{
i ∈ N

∣∣∣ (`+ 1 ≤ i
)
∧
(
z[i− `] . . . z[i] = ω

)}
.

The adversary tries random message blocks B, computing f(h�, B, ω[`]), until some hi0 is encountered. If
i0 ∈ Range, then the second-preimage attack may carry on. Otherwise, another block B needs to be found.
Therefore, the goal of the adversary is to build the diamond structure with a word ω which maximizes the
cardinality of Range.

To attain the objective of maximizing the size of the range, ω should be the most frequent factor of z (amongst
all factors of the same length). Its frequency, the log of which is the min-entropy of z for words of length `, is

a
b

a
c ĥ�

IV
M

H(M)

d

z[1] z[2] a b a c d

Fig. 3: A diamond built on top of a factor of the dithering sequence, connected to the message.

Algorithm 2 Attack Algorithm for Dithered Merkle-Damgård Hash Functions

1. Let ω be the most frequent factor of length `+ 1 of z.
2. Generate a collision tree of depth ` using the first ` symbols of ω as the dithering symbols in all the leaf-to-root paths.

Let ĥ� be the target value (root of the tree).
3. Try random message blocks B, until f

(
ĥ�, B, ω[ell]

)
= hi0 for i0 ∈ Range, where

Range =
{
i ∈ N

∣∣∣ (`+ 1 ≤ i
)
∧
(
z[i− `] . . . z[i] = ω

)}
.

Let B↘ be a message block satisfying this condition, i.e., hi0 = f(ĥ�, B
↘, ω[`]).

4. Pick a prefix P of size i0 − ` − 2 blocks, and let hP be the chaining value obtained after processing P by the hash
function. Try random message blocks B, until f (hP , B) = ĥj for some ĥj labeling a leaf of the diamond. Let B↗

denote this block, and let T be the chain of ` blocks traversing the diamond from ĥj to ĥ�.
5. Form a message M ′ = P ||B↗||T ||B↘||M≥i0+1.

therefore very important in computing the complexity of our attack. We denote it by H∞(z, `). The cost of finding
the second-preimage for a given sequence z is

2
n
2 + `

2+2 + 2H∞(z,`+1) · 2n−κ + 2n−`.

When the computation of the exact H∞(z, `+1) is infeasible, we may use an upper-bound on the complexity
of the attack by using the lower-bound on the frequency of any factor given in Section 4: in the worst case, all
factors of size ` + 1 appear in z with the same frequency, and the probability that a randomly chosen factor of
size `+ 1 in z is the word ω is 1/Factz(`+ 1). This gives an upper bound on the attack’s complexity:

2
n
2 + `

2+2 + Factz(`+ 1) · 2n−κ + 2n−`.

A Time-Memory-Data Tradeoff Variant. As shown in Section 3, one can implement the connection into the
message (Step 3 of Algorithm 2) using a time-memory-data tradeoff. It is easy to see that this attack can also

be applied here, as the dithering letter for the last block is known in advance. This allows reducing the online
complexity to

2
n
2 + `

2+2 + 22(n−κ+H∞(z,`+1)−t) + 2n−`.

in exchange for an additional 2t memory and 2n−κ+H∞(z,`+1) precomputation. As noted earlier, this may allow
applying the attack at the same complexity to shorter messages, which in turn, may change the value of H∞(z, `+
1).

5.2 Multi-Factor Diamonds

So far, we only used a single diamond, built using a single factor of the dithering sequence. As mentioned earlier,
this diamond can only be used at specific locations, specified by its range (which corresponds to the set of
locations of z where the chosen factor appears). We note that while the locations to connect into the message are
determined by the dithering sequence, the complexity of connecting to the diamond structure depends (mostly) on
the parameter `, which can be chosen by the adversary. Hence, to make the online attack faster, we try to enlarge
the range of our herding tool at the expense of a more costly precomputation and memory. We also note that
this attack is useful for cases where the exact dithering sequence is not fully known in advance to the adversary,
but there is a set of dithering sequences whose probabilities are sufficiently “high”. Our tool of trade for this task,
is the multi-factor diamond presented in the sequel.

Let ω1 and ω2 be two factors of size `+2 of the dithering sequence. Now, assume that they end with the same
letter, say α. We can build two independent diamonds D1 and D2 using ω1[1 . . . `] and ω2[1 . . . `], respectively,
to feed the dithering symbols. Assume that the root of D1 (respectively, D2) is labelled by ĥ1� (respectively, ĥ2�).
Now, we could find a colliding pair (m1,m2) such that f(ĥ1�,m1, ω1[`+ 1]) = f(ĥ2�,m2, ω2[`+ 1]). Let us denote
by ĥ�� the resulting chaining value. Figure 4 illustrates our attack. Now, this last node can be connected to the
message using α as the dithering symbol. We have “herded” together two diamonds with two different dithering
words, and the resulting “multi-factor diamond” is more useful than any of the two diamonds separately. This
claim is justified by the fact that the range of the new multi-factor diamond is the union of the two ranges of the
two separate diamonds.

ω1[1 . . . `]

ω2[1 . . . `]

ĥ1
�

ĥ2
�

ĥ��

ω
1 [`+1]

ω2
[`+

1]

α

Fig. 4: A “Multi-diamond” with 2 words.

This technique can be used twice, to provide an even bigger range, as long as there four factors of z of size `+3
such that: ω1[`+ 3] = ω2[`+ 3] = ω3[`+ 3] = ω4[`+ 3] = α

ω1[`+ 2] = ω2[`+ 2] = β
ω3[`+ 2] = ω4[`+ 2] = γ

A total number of 3 colliding pairs are needed to assemble the 4 diamonds together into this new multi-factor
diamond.

Let us generalize this idea. We say that a set of 2k words is suffix-friendly if all the words end by the same
letter, and if after chopping the last letter of each word, the set can be partitioned into two suffix-friendly sets of
size 2k−1 each. A single word is always suffix-friendly, and thus the definition is well-founded. Of course, a set of 2k
words can be suffix-friendly only if the words are all of length greater than k. If the set of factors of size `+ k+1
of z contains a suffix-friendly subset of 2k words, then the technique described here can be recursively applied k
times.

A problem that arises for Merkle-Damgård hash functions is determining the biggest k such that a given set
of words, Ω, contains a suffix-friendly subset of size 2k. Fortunately, this task is doable in time polynomial in the
sizes of Ω and A.

Additionally, given a word ω, we define the restriction of a multi-factor diamond herding tree to ω by removing
nodes from the original until all the paths between the leaves and the root are labelled by ω. For instance, restrict-
ing the multi-factor diamond of Figure 4 to ω1 means keeping only the first sub-diamond and the path ĥ1� → ĥ1��.

Now, assume that the set of factors of size ` + k + 1 of z contains a suffix-friendly subset of size 2k,
Ω = {ω1, . . . , ω2k}. The multi-factor diamond formed by herding together the 2k diamonds corresponding to
the ωi’s can be used in place of any of them, as mentioned above. Therefore, its “frequency” is the sum of the
frequency of the ωi. However, once connected to the message, only its restriction to the `+k+1 letter of z before
the connection can be used. This restriction is a diamond with 2` leaves (followed by a “useless” path of k nodes).

The cost of building a 2k-multi-factor diamond is 2k the time of building a diamond of size ` plus the cost of
finding 2k − 1 additional collisions. Hence, the complexity is 2k · (2(n+`)/2+2 + 2n/2) ≈ 2k+(n+`)/2+2 compression
function calls. The cost of connecting the prefix to the multi-factor diamond is still 2n−` (this step is the same as
in our original attack).

Lastly, the cost of connecting the multi-factor diamond to the message depends on the frequency of the factors
chosen to build it, which ought to be optimized according to the actual dithering sequence. Similarly to the
min-entropy, we denote by Hk

∞(z, ` + 1) the min-entropy associated with a 2k suffix-friendly set of length ` + 1
(i.e., the set of 2k suffix-friendly dithering sequences of length `+ 1 which offers the highest probability).

The multi-factor diamond attack is demonstrated against Keränen-DMD in Section 5.3 and against Shoup’s
UOWHF in Section 7.3. In both cases, it is more efficient than the basic version.

5.3 Applications of the New Attacks

We now turn our attention to concrete instantiations of dithered hashing to which the attack can be applied
efficiently.

Cryptanalysis of Keränen-DMD. The cost of the single-diamond attack against Keränen-DMD depends on
the properties of the sequence k that have been outlined in Section 4. Let us emphasize again that since it has a
very regular structure, k has an unusually low complexity, and despite being strongly repetition-free, the sequence
offers an extremely weak security level against our attack. Following the ideas of section 4.1, the min-entropy
of k for words of size ` ≤ 85 can be computed precisely: for 29 ≤ ` ≤ 85, the frequency of the most frequent

factor of size `+ 1 is 1/(4 · 85) = 2−8.4 (if all the factors of length, say, 50 were equally frequent, this would have
been 1/732 = 2−9.5). Therefore, H∞(z, `+ 1) = 8.4, and the cost of our attack on Keränen-DMD, assuming that
29 ≤ ` ≤ 85:

2
n
2 + `

2+2 + 2n−κ+8.4 + 2n−`.

If n is smaller than 3κ − 8.4, the optimal value of ` is reached by fixing ` = (n − 4)/3. For n in the same
order as 3κ, all the terms are about the same (for n > 3κ, the first term can be ignored). Hence, to obtain the
best overall complexity (or to optimize the online complexity) we need to fix ` such that 2n−κ+8.4 = 2n−`, i.e.,
` = κ−8.4. For example, for κ = 55 the optimal value of ` is 46.6. The online running time (which is the majority
of the cost for n > 3κ) is in this case 2n−46.6 which is much smaller than 2n in spite of the use of dithering. For
larger values of `, i.e., 85 ≤ ` < 128, we empirically measured the min-entropy to be H∞(k, ` + 1) = 9.8 i.e.,
` = κ− 9.8 can be used when n ≈ 3κ.

We also successfully applied the multi-factor diamond attack to Keränen-DMD. We determined the smallest `
such that the set of factors of size ` of the Keränen sequence k contains a 2k suffix-friendly set, for various values
of k:

k min ` Factz(`)

4 4 88
5 6 188
6 27 540
7 109 1572
8 194 4256

From this table we conclude that our choice of k we will most likely be 6, or maybe 7 if κ is larger than 109
(which is the case for e.g. SHA-512). Choosing larger values of k would require ` to be larger than 194, and at the
time of this writing most hash functions do not allow messages of 2194 blocks to be hashed. Thus, these choices
would unbalance the cost of the two online connections steps.

Amongst all the possible suffix-friendly sets of size 26 found in the factors of size about 50 of k, we chose
one having a high frequency using a greedy algorithm making use of the ideas exposed in Section 4.1. We note
that checking whether this yields optimal multi-factor diamonds is out of the scope of this paper. In any case, we
found the frequency of our multi-factor diamond to be 2−3.97. Page size limitations prevents us from showing it,
but we show a slighlty smaller multi-factor diamond of size 25 on fig 5.

If n is sufficiently large (for instance, n = 256), the offline part of the attack is still of negligible cost. Then,
the minimal online complexity is obtained when 2n−κ+3.97 = 2n−`, i.e., ` = κ−3.97. The complexity of the attack
is then roughly 2 · 2n−κ+4 for sufficiently large values of n. This represents a speed-up of about 21 compared to
the single-diamond attack.

Cryptanalysis of DMD-CP. We now apply our attack to Rivest’s concrete proposal. We first need to evaluate
the complexity of its dithering sequence. Recall from Section 4.2 that it is based on the Keränen sequence, but
that we move on to the next symbol of the sequence only when a 13-bit counter overflows (we say that it results
in the dilution of k with a 13-bit counter). The original motivation was to reduce the cost of the dithering, but
it has the unintentional effect of increasing the resulting sequence complexity. It is possible to study this dilution
operation generically, and to see to which extent it makes our attack more difficult.

c

a

d

b

c

c

a

da

abc
bdb

c

bcd

b

cb

ca

c

dbd

a

b

cabadb

bcdbdadcdadbad
ac

c

d

a

bdc

dbcba

d

bcd

ab

daba

abcacdcbcd

cda

bc

abacbabdbcdcacdcbdcdadbdadcadabacadcdbcdcac
acdcbdcdadbdadcadabacadcdbcdcacbadabacabdad
abcacdcbcdcadcdbdabacabadbabcbdbcbacbcdcacb
dbdacdcbdcdadbdadcadabacadcdbabcacdcbcdcadc
adabacabadbabcbdbadacdadbdcbabcbd
adcadabacadcdbabcacdcbcdcadcdbdab
cbacbcdcacdcbdcdadbdcbc
adcadabacabadbabcbdbada
abadbabcbdbadacdadbdcbabcbdbcabadbabcbdbcb
dcadcdbdabacabadbabcbdbcbacbcdcacbabdabaca
dacabadabacbabdbcdcacdcbdcdadbdadcadabacad
dbcabadbabcbdbcbacbcdcacbabdcdacabadabacba
bdcbcabcbdbadcdadbdacdcbdcdadbdadcadabacadcd
cadcdbcdcacbadabacabdadcadabacabadbabcbdbada
bcdcacbabdabacadcbcdcacdbcbacbcdcacdcbdcda
cbcdcacdbcbacbcdcacdcbdcdadbdcbcadabdbcbab
acabadbabcbdbadacdadbdcbabcbdbcabadbabc
acabadbabcbdbcbacbcdcacbabdabacadcbcdca
bcdcadcdbdabacabadbabcbdbcbacbcdcacbabdabac
bcbdbadcdadbdacdcbdcdadbdadcadabacadcdbabca
adbabcbdbcbacbcdcacbabdabacadcbcdcacdbcba
cabadbabcbdbcbacbcdcacbabdcdacabadabacbab
cbcabcbdbadcdadbdacdcbdcdadbdadcadabacadcd
dcdbcdcacbadabacabdadcadabacabadbabcbdbada
cbdcdadbdcbcabcbdbadcdadbdacdcbdcdadbdadc
acdcbcdcadcdbdabacabadbabcbdbcbacbcdcacba
dbadcdadbdacdcbdcdadbdadcadabacadcd
acbadabacabdadcadabacabadbabcbdbada
acbcdcacdcbdcdadbdcbcabcbdbadcdadbdacdcb
bcbacbcdcacdcbdcdadbdcbcadabdbcbabcbdcbc
abdabacadcbcdcacdbcbacbcdcacdcbdcdadbdcbc
cdbcdcacbadabacabdadcadabacabadbabcbdbada

b
c
a
d

b
a

a
c

a
d
c
b

b
c

d
c

b
c

a
c

c
d
b
c

a
b

b
c

d
a
a
c

Fig. 5: A suffix-friendly set of 32 factors of size 50 from the Keränen sequence.

Lemma 2. Let z be an arbitrary sequence over A, and let d denote the sequence obtained by diluting z with a
counter over i bits. Then for every ` not equal to 1 modulo 2i, we have:

Factd(`) =
(
2i − (` mod 2i) + 1

)
· Factz

(⌈
` · 2−i

⌉)
+
((
` mod 2i

)
− 1
)
· Factz

(⌈
(`− 1) · 2−i

⌉
+ 1
)

Proof. The counter over i bits splits the diluted sequence c into chunks of size 2i (a new chunk begins when
the counter reaches 0). In a chunk, the letter from z does not change, and only the counter varies. To obtain
the number of factors of size `, let us slide a window of size ` over d. This window overlaps at least

⌈
` · 2−i

⌉
chunks (when the beginning of the window is aligned at the beginning of a chunk), and at most

⌈
(l − 1) · 2−i

⌉
+1

chunks (when the window begins just before a chunk boundary). These two numbers are equal if and only if ` ≡ 1
mod 2i. When this case is avoided, then these two numbers are consecutive integers.

This means that by sliding this window of size ` over d we observe only factors of z of size
⌈
` · 2−i

⌉
and⌈

` · 2−i
⌉
+ 1. Given a factor of size

⌈
` · 2−i

⌉
of z, there are

(
2i − (` mod 2i) + 1

)
positions of a window of size

` that allow us to observe this factor with different values of the counter. Similarly, there are
((
` mod 2i

)
− 1
)

positions of the window that contain a given factor of z of size
⌈
` · 2−i

⌉
+ 1. ut

By taking 2 ≤ ` ≤ 2i, we have that
⌈
` · 2−i

⌉
= 1. Therefore, only the number of factors of length 1 and 2 of z

come into play. The formula can be further simplified into:

Factd(`) = ` ·
(
Factz(2)− Factz(1)

)
+ (2i + 1) · Factz(1)− Fact2(z).

For the Keränen sequence with i = 13, this gives: Factd(`) = 8 · ` + 32760. Diluting over i bits makes the
complexity 2i times higher, but it does not change its asymptotic expression: it is still linear in `, even though
the constant term is bigger due to the counter. The cost of the attack is therefore:

2
n
2 + `

2+2 + (8 · `+ 32760) · 2n−κ + 2n−`.

At the same time, for any ` ≤ 2i, the most frequent factor of d is (α, 0), (α, 1), . . . , (α, ` − 1) when α is the
most frequent letter of the Keränen sequence. However, as shown in section 4.1, all the letters have the same
frequency, so most frequent factor of the diluted Keränen sequence d has a frequency of 2−15. Hence, the cost of
the above attack is:

2
n
2 + `

2+2 + 2n−κ+15 + 2n−`.

This is an example where the most frequent factor has a frequency which is very close to the inverse of the number
of factors (2−15 vs. 1/(8 · ` + 32760)). In this specific case it may seem that the gain of using the most frequent
element is small, but in some other cases, we expect much larger gains.

As before, if n is greater than 3κ (in this specific case n ≥ 3κ − 41), the optimal value of ` is κ − 15, and
the complexity of the attack is then approximately: 2 · 2n−κ+15. For settings corresponding to SHA-1, a second
preimage can be found in expected time of 2120 (for 78 > ` > 40).

5.4 Countermeasures

We just observed that the presence of a counter increases the complexity of the attack. If we simply use a counter
over i bits as the dithering sequence, the number of factors of size ` is Fact(`) = 2i (as long as i ≤ `). The
complexity of the attack would then become: 2

n
2 + `

2+2 + 2n−κ+i + 2n−`.
By taking i = κ, we obtain a scheme which is resistant to our attack. This is essentially the choice made by

the designers of Haifa [6], or the UBI mode [19], but such a dithering sequence consumes (at least) κ bits of
bandwidth.

Using a counter (i.e., a big alphabet) is a simple way to obtain a dithering sequence of high complexity.
Another, somewhat orthogonal, possibility to improve the resistance of Rivest’s dithered hashing to our attack
is to use a dithering sequence of high complexity over a small alphabet (to preserve bandwidth). However, in
Section 6 we show how to perform some attacks on dithering sequences over small alphabet, which require a
one-time heavy computation, but can then be used to find second preimages faster than exhaustive search.

There are Abelian Square-Free Sequences of Exponential Complexity. It is possible to construct an
infinite abelian square-free sequence of exponential complexity, although we do not know how to do it without
slightly enlarging the alphabet.

We start with the abelian square-free Keran̈en sequence k over {a, b, c, d}, and with another sequence u
over {0, 1} that has an exponential complexity. For example, such a sequence can be built by concatenating
the binary encoding of all the consecutive integers. Then we can create a sequence z̃ over the union alphabet
A = {a, b, c, d, 0, 1} by interleaving k and u: z̃ = k[1].u[1].k[2].u[2]. . . . The resulting shuffled sequence inherits
both properties: it is still abelian square-free, and has a complexity of order Ω

(
2`/2

)
.

Using this improved sequence, with ` = 2κ/3, the total cost of the online attack is about 2n−2κ/3 (for n > 8κ/3).
As a conclusion, we note that even with this exponentially complex dithering sequence, our attack is still more
efficient than brute-force in finding second-preimages. Although it may be possible to find square-free sequences
with even higher complexity, it is probably very difficult to achieve optimal protection, and the generation of the
dithering sequences is likely to become more and more complex.

Pseudorandom Sequences. Another possible way to improve the resistance of Rivest’s construction against
our attack is to use a pseudo random sequence over a small alphabet. Even though it may not be repetition-free, its
complexity is almost maximal. Suppose that the alphabet has size

∣∣A∣∣ = 2i. Then the expected number of `-letter
factors in a pseudo random word of size 2κ is lower-bounded by: 2i·` ·

(
1 − exp−2

κ−i·`)
(refer to [22], theorem 2,

for a proof of this claim). The total optimal cost of the online attack is then at least 2n−κ/(i+1)+2 and is obtained
with ` = κ/(i + 1). With 8-bit dithering symbols for κ = 55, the complexity of our attack is about 2n−5, which
still offers a small advantage over the generic exhaustive search.

6 Dealing with High Complexity Dithering Sequences

As discussed before, one possible solution to our proposed attacks is to use a high complexity sequence. In this
section, we explore various techniques that can attack such sequences. We start with a simple generalization of
our proposed attack. We then follow with two new attacks which have an expensive precomputation, in exchange
for a much faster online phases: The kite generator and a variant of Dean’s attack tailored to these settings.

6.1 Generalization of the Previous Attack

The main limiting factor of the previous construction is the fact that the diamond structure can be positioned
only in specific locations. Once the sequence is of high enough complexity, then there are no sufficient number
of “good” positions to apply the attack. To overcome this, we generate a converging tree in which each node
is a 2|A|-collision. Specifically, for a pair of starting points w0 and w1 we find a 2|A|-collision under different
dithering letters, i.e., we find m1

0, . . . ,m
|A|
0 and m1

1, . . . ,m
|A|
1 such that

f(w0,m
1
0, α1) = f(w0,m

2
0, α2) = . . . = f(w0,m

|A|
0 , α|A|) = f(w1,m

|A|
1 , α|A|) = . . . = f(w1,m

2
1, α2) = f(w1,m

1
1, α1).

This way, we can position the diamond structure in any position, unrelated to the actual dithering sequence,
as we are assured to be able to “move” from the i’th level to the (i + 1)’th one, independently of the dithering
sequence.

To build the required diamond structure we propose the following algorithm: First for each starting point
(out of the 2`) find a |A|-collision (under the different dithering letters). Now, it is possible to find collisions

between different starting points (just like in the original diamond structure, where we use a |A|-collision rather
than one message). Hence, the total number of |A|-collisions which are needed from one specific starting point (in
order to build the next layer of the collision tree) is 2n/2−`/2. The cost for building this number of |A| collisions
is 2

2|A|−1
2|A| n−

`
2|A| , or a total of 2

2|A|−1
2|A| (n+`)+2 for the preprocessing step.

After the computation of the diamond structure (which may take more than 2n), one can connect to any point
in the message, independent of the used dithering letter. Hence, from the root of the diamond structure we try
the most common dithering letter, and try to connect to all possible locations (this takes time 2n−κ+H∞(z,1) ≤∣∣A∣∣ · 2n−κ). Connecting from the message to the diamond structure takes 2n−` as before.

The memory required for storing the diamond structure is O
(
|A| · 2`

)
. We note that the generation of the |A|-

collision can be done using the results of [24], which allow balancing between the preprocessing’s time and its
memory consumption.

Finally, given the huge precomputation step, it may be useful to consider a time-memory-data tradeoff for
the first connection. This can be done by exploiting the 2n−κ+H∞(z,1) possible targets as multiple data points.
The analysis of this approach is the same as for the simple attack, and the resulting additional preprocessing
is 2n+H∞(z,1)−λ, which along with an additional 2n+H∞(z,1)−2λ memory reduces the online connection phase
to 2n−` + 22λ (for λ < κ−H∞(z, 1)).

6.2 The Kite Generator—Dealing with Small Dithering Alphabets

Even though the previous attack could handle any dithering sequence, it still relies on the ability to connect to
the message. We can further reduce the online complexity (as well as the offline) by introducing a new technique,
the kite generator. The kite generator shows that a small dithering alphabet is an inherent weakness, and after
a O (2n) preprocessing, second-preimages can be found for messages of length 2l ≤ 2n/4 in O

(
22·(n−l)/3

)
time

and space for any dithering sequence (even of maximal complexity). second-preimages for longer messages can be
found in time max

(
O
(
2k
)
,O
(
2n/2

))
and memory O

(∣∣A∣∣ · 2n−k) (for k determined by the adversary).

Outline of the Attack. The kite generator uses a different approach, where the connections to and from the
message are done for free, independent of the dithering sequence. In exchange, the precomputation phase is
more computationally intensive, and the patch is significantly longer. In the precomputation phase the adversary
builds a static data structure, the kite generator: she picks a set of 2n−κ chaining values, B, that contains the IV .
For each chaining value x ∈ B and any dithering letter α ∈ A, the adversary finds two message blocks mx,α,1

and mx,α,2, such that f(x,mx,α,1, α), f(x,mx,α,2, α) ∈ B. The adversary then stores all mx,α,1 and all mx,α,2 in
the data structure. Fig. 6 shows a toy kite generator.

In the online phase of the attack, given a message M , the adversary computes h(M), and finds with high
probability (thanks to the birthday paradox) an intermediate chaining value ĥi ∈ B that equals to hj obtained
during the processing of M (for n − κ < j < 2κ). The next step of the attack is to find a sequence of j blocks
from the IV that leads to this ĥi = hj . This is done in two steps. In the first step, the adversary performs a
random walk in the kite generator, by just picking random mx,α,i one after the other (according to the dithering
sequence), until ĥ′i−(n−κ) is computed (this ĥi−(n−κ) is independent of ĥi = hj). At this point, the adversary stops
her random walk, and computes from ĥi−(n−κ) all the possible 2(n−κ)/2 chaining values reachable through any
sequence of mx,α,1 or mx,α,2 (which agrees with the dithering sequence)—this amounts to consider all the paths
starting from where the random walk stopped inside the kite generator and trying all the paths whose labels
agree with the dithering sequence. Then, the adversary computes the “inverse” tree, starting from ĥi, and listing

IV

ĥ0

ĥ1

ĥ2

ĥ3

ĥ4

ĥ5

ĥ6

ĥ7

ĥ8

ĥ9

ĥ10

ĥ11

ĥ12

ĥ13

ĥ14

Fig. 6: A toy “Kite-Generator” with 16 nodes over a binary alphabet: Each node contains a chaining value, and
each edge is labeled by a a message block and a dithering letter. Hard edges correspond to the first letter, and
dashed edges to the second letter.

the expected 2(n−κ)/2 values5 that may lead to it following the dithering sequence. If there is a collision between
the two lists (which happens with high probability due to the birthday paradox), then the adversary just found
the required path—she “connected” the IV to ĥi. Fig 7 illustrates the process.

The precomputation takes O
(∣∣A∣∣ · 2n−κ · 2κ) = O

(∣∣A∣∣ · 2n). The memory used to store the kite generator
is O

(∣∣A∣∣ · 2n−κ). The online phase requires O (2κ) compression function calls to compute the chaining values
associated with M , and O

(
2(n−κ)/2

)
memory and time for the meet-in-the-middle phase.6 We conclude that the

online time is max
(
O (2κ) ,O

(
2(n−κ)/2

))
and the total used space is O

(∣∣A∣∣ · 2n−κ). For the SHA-1 parameters
of n = 160 and κ = 55, the time complexity of the new attack is 255, which is just the time needed to hash the
original message. However, the size of the kite generator for the above parameters exceeds 2110.

To some extent, the “converging” part of the kite generator can be treated as a diamond structure (for each
end point, we can precompute this “structure”). Similarly, the expanding part, can be treated as the trials to
connect to this diamond structure from h′i−(n−κ).

5 See [18] for a formal justification of the size of the inverse “tree”.
6 The meet-in-the-middle can be done using memoryless variants as well.

IV H(M)hj = ĥi
M

MitM

Fig. 7: A “Kite” connected to and from the message.

We note that the attack can also be applied when the IV is unknown in advance (e.g., when the IV is time
dependent or nonce), with essentially the same complexity. When we hash the original long message, we have to
find two intermediate hash values hi and hj (instead of IV and hi) which are contained in the kite generator and
connect them by a properly dithered kite-shaped structure of the same length.

The main problem of this technique is that for the typical case in which κ < n/2, it uses more space than
time, and if we try to equalize them by reducing the size of the kite generator, we are unlikely to find any common
chaining values between the given message and the kite generator.

A “Connecting” Kite Generator In fact, the kite generator can be seen as an expandable message tolerating
the dithering sequence, and we can use it in a more “traditional” way.

We first pick a special chaining value N in the kite generator. From this N we are going to connect to the
message (following the approaches suggested earlier, as if N is the root of a diamond structure). Then, it is
possible to connect from the IV to N inside the kite generator.

For a kite of 2` points, the offline complexity is O
(∣∣A∣∣ · 2n), and the online complexity is 2n−κ+H∞(z,1)+2κ+

2`/2+1. The memory required for the attack is O
(
2`
)
. It is easy to see that for κ < n/2, the heavy computation

is the connection step, which seems a candidate for optimization.
We can also connect from N to the message using a time-memory-data tradeoff (just like in Section 3). In

this case, given the 2κ−H∞(z,1) targets, the precomputation is increased by 2n−κ+H∞(z,1) (which is negligible with
respect to the kite’s precomputation). The online complexity is reduced to 22(n−t−κ+H∞(z,1)) for an additional 2t
memory (as long as 2(n− t− κ+H∞(z, 1)) ≥ 2(κ−H∞(z, 1)), i.e., t ≤ n− 2(κ−H∞(z, 1))). The overall online
complexity is thus 2`/2+1 + 22(n−t−κ+H∞(z,1)), which is lower bounded by 2`/2+1 + 22(κ−H∞(z,1)).

6.3 A Variant of Dean’s Attack for Small Dithering Alphabet

Given the fact that the connection into the message is the more consuming part of the attack, we now present a
degenerate case of the kite generator. This construction can also be considered as an adaptation of Dean’s attack
to the case of small dithering alphabet.

Assume that the kite generator contains only one chaining value, namely, IV . For each dithering letter α,
we find xα such that f(IV, xα, α) = IV . Then, we can “move” from IV to IV under any dithering letter. At

Attack Complexity Avg.
Offline Online Memory Patch

Adapted (Sect. 5.1) 2(n+`)/2+2 2n−κ+H∞(z,`+1) + 2n−` 2`+1 `+ 2

Multi-Factor Diamond (Sect. 5.2) 2k+(n+`)/2+2 2n−κ+H
k
∞(z,`+1) + 2n−` 2k+`+1 k + `+ 2

Generalized (Sect. 6.1)
2

2

∣∣A∣∣−1

2

∣∣A∣∣ ·(n+`)+2 2n−κ+H∞(z,1) + 2n−`
∣∣A∣∣ · 2`+1 `+ 2

Kite Generator (Sect. 6.2)
∣∣A∣∣ · 2n 2κ + 2(n−κ)/2+1

∣∣A∣∣ · 2n−κ+1 2κ−1

“Connecting” Kite (Sect. 6.2)
∣∣A∣∣ · 2n 2κ + 2n−κ+H∞(z,1) + 2`/2+1

∣∣A∣∣ · 2`+1 2κ−1

“Self-loop” (Sect. 6.3)
∣∣A∣∣ · 2n 2n−κ+H∞(z,1)

∣∣A∣∣ 2κ−1

Hk
∞(z, `+ 1) — the min-entropy of all sets of 2k suffix-friendly dithering sequences of length `+ 1.

Table 3. Comparison of Long Message Second-Preimage Attacks on Dithered Hashing

this point, we connect from the IV to the message (either directly, or using time-memory-data tradeoff), and
“traverse” the degenerate kite generator under the different dithering letters.

Hence, a standard implementation of this approach would requireO
(∣∣A∣∣ · 2n) precomputation and 2n−κ+H∞(z,1)

online computation (with
∣∣A∣∣ memory). A time-memory-data variant can reduce the online computation to

22(n−t−κ+H∞(z,1)) in exchange for 2t memory (as long as t ≤ n− 2(κ−H∞(z, 1))).
Table 3 compares all the techniques suggested for dithered hashing.

7 Matching the Security Bound on Shoup’s UOWHF

In this section, we show that the idea of turning the herding attack into a second-preimage attack is generic
enough to be applied to Shoup’s Universal One-Way Hash Function (UOWHF) [46]. A UOWHF is a family of
hash functions H for which any computationally bounded adversary A wins the following game with negligible
probability. First, A chooses a message M , then a key K is chosen at random and given to A. The adversary wins
if she generates a message M ′ 6= M such that HK(M) = HK(M ′). This security property, also known as target
collision security or everywhere second preimage security [44] of a hash function, was first introduced in [40].

Bellare and Rogaway studied the construction of variable input length TCR hash functions from fixed input
length TCR compression functions in [4]. They also demonstrated that the TCR property is sufficient for a
number of signing applications. Shoup [46] improved on the former constructions by proposing a simpler scheme
that also yields shorter keys (by a constant factor). It is a Merkle-Damgård-like mode of operation, but before
every compression function evaluation in the iteration, the state is updated by XORing one out of a small set of
possible masks into the chaining value. The number of masks is logarithmic in the length of the hashed message,
and the order in which they are used is carefully chosen to maximize the security of the scheme. This is reminiscent
of dithered hashing, except that here the dithering process does not decrease the bandwidth available to actual
data (it just takes a few more operations).

We first briefly describe Shoup’s construction, and then show how our attack can be applied against it. The
complexity of the attack demonstrates that for this particular construction, Shoup’s security bound is nearly tight
(up to a logarithmic factor).

7.1 Description of Shoup’s UOWHF

Shoup’s construction has some similarities with Rivest’s dithered hashing. It starts from a universal one way
compression function f that is keyed by a key K, fK : {0, 1}n × {0, 1}m → {0, 1}n. This compression function is
then iterated, as described below, to obtain a variable input length UOWHF Hf

K .
The scheme uses a set of masks µ0, . . . , µκ−1 (where 2κ−1 is the length of the longest possible message), each

one of which is a random n-bit string. The key of the whole iterated function consists of K and of these masks.
After each application of the compression function, a mask is XORed to the chaining value. The order in which
the masks are applied is defined by a specified sequence over the alphabet A = {0, . . . , κ− 1}. The scheduling
sequence is z[i] = ν2(i), for 1 ≤ i ≤ 2κ, where ν2(i) denotes the largest integer ν such that 2ν divides i. Let M
be a message that can be split into r blocks x1, . . . , xr of m bits each and let h0 be an arbitrary n-bit string. We
define hi = fK

(
hi−1 ⊕ µν2(i), xi

)
, and Hf

K(M) = hr.

7.2 An Attack (Almost) Matching the Security Bound

In [46], Shoup proves the following security result:

Theorem 2 (Shoup, 2000, [46]). If an adversary is able to break the target collision-resistance of Hf with
probability ε in time T , then one can construct an adversary that breaks the target collision-resistance of f in time
T , with probability ε/2κ.

In this section we show that this bound is almost tight. First, we give an alternate definition of the dithering
sequence zShoup. In fact, the alphabet over which the sequence zShoup[i] = ν2(i) is built is not finite, as it is the
set of all integers. In any case, we define:

ui =

{
0 if i = 1,
ui−1.(i− 1).ui−1 otherwise.

As an example, we have u4 = 010201030102010. The following facts about zShoup are easy to establish:

i) |ui| = 2i − 1
ii) The number of occurrences of ui in uj (with i < j) is 2j−i.
iii) The frequency of ui in the (infinite) sequence z is 2−i.
iv) The frequency of a factor is the frequency of its highest letter.
v) Any factor of zShoup of size ` contains a letter greater or equal to blog2 (`)c.

Let us consider a factor of size ` of zShoup. It follows from the previous considerations that its frequency is
upper-bounded by 2−blog2(`)c−1, and that the prefix of size ` of zShoup has a greater or equal frequency. The
frequency of this prefix is lower-bounded by the expression: 2−blog2(`)c−1 ≥ 1/(2 · `).

Our attack can be applied against the TCR property of Hf as described above. Choose at random a (long)
target message M . Once the key is chosen at random, build a collision tree using a prefix of zShoup of size `, and
continue as described in section 5. The cost of the attack is then:

T = 2
n
2 + `

2+2 + 2 · ` · 2n−κ + 2n−`.

This attack breaks the target collision-resistance with a constant success probability (of about 63%). Therefore,
with Shoup’s security reduction, one can construct an adversary against f with running time T and probability
of success 0.63/2κ. If f is a black box, the best attack against f ’s TCR property is exhaustive search. Thus, the

best adversary in time T against f has success probability of T/2n. When n ≥ 3κ, T ' (2κ + 2) · 2n−κ (with
` = κ − 1), and thus the best adversary running in time T has success probability O (κ/2κ) when the success
probability of the attack is 0.63/2κ. This implies that there is no attack better than ours by a factor greater than
O (κ) or, in other words, there is only a factor O (κ) between Shoup’s security proof and our attack.

We note that in this case, there is a very large gap between the frequency of the most frequent factor and the
upper-bound provided by the inverse of the number of factors. Indeed, it can be seen that:

Factui(`) =

0 if |ui| < `

2i − ` if |ui−1| < ` ≤ |ui|
`+ Factui−1

(`) if |ui−1| ≥ `

And the expression of the number of factors follows:

Factuκ(`) = 2dlog2(`+1)e +
(
κ− dlog2(`+ 1)e − 1

)
· `

Hence, if all of them would appear with the same probability, the time complexity of the attack would have been

T = 2
n
2 + `

2+2 +
(
2dlog2(`+1)e +

(
κ− dlog2(`+ 1)e − 1

)
· `
)
· 2n−κ + 2n−`,

which is roughly κ times bigger than the previous expression.
The ROX construction by [2], which also uses Shoup’s sequence to XOR with the chaining values is susceptible

to the same type of attack, which is also provably near-optimal.

7.3 Application of the Multi-Factor Diamonds Attack

To apply the multi-factor diamond attack described in section 5.2, we need to identify a big enough suffix-friendly
subset of the factors of zShoup of a given size, and to compute its frequency.

We choose to have end diamonds of size ` = 22
i−1. Let us keep in mind that ` and κ must generally be of the

same order to achieve the optimal attack complexity, which suggests that i should be close to log2 log2 κ.
Now, we need to identify a suffix-friendly set of factors of zShoup in order to build a multi-factor diamond. In

fact, we focus on the factors that have ui as a suffix. It is straightforward to check that they form a suffix-friendly
set. It now remains to estimate its size and its frequency.

Lemma 3. let Ωj be the set of words ω of size ` = 22
i−1 such that ω.ui is a factor of uj. Then:

i) If κ ≥ 2i, then |Ωκ| =
(
κ− 2i + 1

)
· 22

i−i−1

ii) There are 22
i−i−1 (distinct) words in Ωκ whose frequency is 2−j (with 2i ≤ j ≤ κ).

Proof. We first evaluate the size of Ω, and for this we define fi(κ), the number of factors of uκ that can be written
as ω.ui, with |ω| = 22

i−1. We find:

|Ωκ| =

{
0 if 2κ < 22

i−1 + 2i

|Ωκ−1|+ 22
i−i−1 if 2κ ≥ 22

i−1 + 2i
(3)

The first case of this equality is rather obvious. The second case stems from the following observation: let x
be a factor of uj , for some j. Then either x is a factor of uj−1, or u contains the letter “j − 1” (both cases are

Function MD5 SHA-1 SHA-256 SHA-512
(n, κ) (128,55) (160,55) (256,118) (512,118)

Original (Sect. 7.2) Offline: 291 2107 2189 2317

Online: 280 2112 2145.7 2401.7

Memory: 250 250 2111.3 2111.3

Patch: 51 51 114 114
Multi-Factor Diamond (Sect. 7.3) Offline: 296.5 2112.5 2194.5 2322.5

Online: 276.9 2108.9 2142 2398

Memory: 259 259 2123 2123

Patch: 60 60 124 124

Table 4. Comparison of the Time Complexity of our Attacks on Shoup’s UOWHF

mutually exclusive). Thus, we only need to count the numbers of factors of Ωκ containing the letter “κ − 1” to
write a recurrence relation.

If 2κ ≥ 22
i−1+2i, then ui appears 2κ−i times in uκ, at indices that are multiples of 2i. The unique occurrence

of the letter “κ− 1” in uκ is at index 2κ−1 − 1. Thus, elements of Ωκ containing the letter “κ− 1” are present in
uκ at indices 2κ−1 − 22

i−1 + α · 2i, with 0 ≤ α < 22
i−i−1. Therefore, there are exactly 22

i−i−1 distinct elements
of Ωκ containing “κ − 1” in uκ (they are necessarily distinct because they all contain “κ − 1” only once and at
different locations).

Now that Equation (3) is established, we can unfold the recurrence relation. We note that we have for i ≥ 1,⌈
log2

(
22
i−1 + 2i

)⌉
= 2i, and thus we obtain (assuming that κ ≥ 2i):

|Ωκ| =
(
κ− 2i + 1

)
· 22

i−i−1

Also, for 2i ≤ j ≤ κ, Ωκ contains precisely 22
i−i−1 words whose greatest letter is “j−1”, and thus whose frequency

in zShoup is 2−j . ut

By just selecting the factors of Ωκ of the highest frequency, we would herd together 22
i−i−1 = `/ (1 + log2 `) di-

amonds, each one being of frequency 1/(2`). The frequency of the multi-factor diamond then becomes 1/ (2 + 2 log2 `).
The cost of the multi-factor diamond attack is thus roughly:

`

1 + log2 `
·
(
2(n+`)/2+2 + 2

n
2

)
+ (1 + log2 `) · 2n−κ+1 + 2n−`.

If n � 3κ, the preprocessing will be negligible compared to the online time, and the cost of the attack is
O (log κ · 2n−κ). Therefore, with the same proof as in the previous subsection, we can show that there is a factor
O (log κ) between Shoup’s security proof and our attack. Note that, depending on the parameters, this improved
version of the attack may be worse than the basic version.

We outline the complexities out our attacks (the regular and the multi-factor diamond ones) against MD5,
SHA-1, SHA-256, and SHA-512 in Table 4.

8 Second-Preimage Attack with Multiple Targets

Both the older generic second-preimage results of [16, 27] and our results can be applied efficiently to multiple
target messages. The work needed for these attacks depends on the number of intermediate hash values of the

target message, as this determines the work needed to find a linking message from the collision tree (our attack)
or from the expandable message ([16, 27]). A set of 2R messages, each of 2κ blocks, has the same number of
intermediate hash values as a single message of 2R+κ blocks, and so the difficulty of finding a second-preimage
for one of a set of 2R such messages is no greater than that of finding a second-preimage for a single 2R+κ block
target message. In general, for the older second-preimage attacks, the total work to find one second-preimage
falls linearly in the number of target messages; for our attack, it falls also linearly as long as the total number of
message blocks, 2S , satisfies S < (n− 4)/3.

Consider for example an application which has used SHA-1 to hash 230 different messages, each of 220 message
blocks. Finding a second-preimage for a given one of these messages using the attack of [27] requires about 2141
work. However, finding a second-preimage for one of these of these 230 target messages requires 2111 work.
(Naturally, the adversary cannot control for which target message he finds a second-preimage.)

This works because we can consider each intermediate hash value in each message as a potential target to
which the root of the collision tree (or an expandable message) can be connected, regardless of the message it
belongs to, and regardless of its length. Once we connect to an intermediate value, we have to determine to which
particular target message it belongs. Then we can compute the second-preimage of that message. Using similar
logic, we can extend our attack on Rivest’s dithered hashes, Shoup’s UOWHF, and the ROX hash construction
to apply to multiple target messages (we note that in the case of Shoup’s UOWHF and ROX, we require that the
same masks were used for all the messages).

This observation is important for two reasons: First, simply restricting the length of messages processed by a
hash function is not sufficient to block the long-message attack; this is relevant for determining the necessary se-
curity parameters of future hash functions. Second, this observation allows long-message second-preimage attacks
to be applied to target messages of practical length. A second-preimage attack which is feasible only for a message
of 250 blocks has no practical relevance, as there are probably no applications which use messages of this length.
A second-preimage attack which can be applied to a large set of messages of, say, 224 blocks each, can offer a
practical impact. While the computational requirements of these attacks are still infeasible, this observation shows
that the attacks can apply to messages of practical length. Moreover, for hashes which use the same dithering
sequence z in all invocations, this has an affect on the frequency of the most common factors (especially when
the most common factor is relatively in the beginning of the dithering sequence, e.g., Shoup’s UOWHF with the
same set of keys).

The long-message second-preimage attack on tree-based hashes offers approximately the same improvement,
as the number of targets is increased. Thus, since a tree hash with an n-bit compression function output and 2s

message blocks offers a 2n−s+1 long-message second-preimage attack, a set of 2r messages, each 2s message blocks
long and processed with a tree hash, will allow a second-preimage on one of those messages with about 2n−s−r+1

work.

Acknowledgments. Thanks to Lily Chen and Barbara Guttman for useful comments. Thanks to Jean-Paul
Allouche, Jeffrey Shallit, and James D. Currie for pointing out the existence of abelian square-free sequences of
high complexity.

The work of the first author has been funded by a Ph.D. grant of the Flemish Research Foundation and
supported in part by the Concerted Research Action (GOA) Ambiorics 2005/11 of the Flemish Government
and the IAP Programme P6/26 BCRYPT of the Belgian State (Belgian Science Policy). The third author was
partially supported by the France Telecome Chair and in part by ISF grant XXXXXX. This work was also
partially supported by the European Commission through the IST Programme under contracts IST-2002-507932
ECRYPT and ICT-2007-216676 ECRYPT II.

References

1. Allouche, J.P.: Sur la complexité des suites infinies. Bull. Belg. Math. Soc. 1 (1994) 133–143
2. Andreeva, E., Neven, G., Preneel, B., Shrimpton, T.: Seven-Property-Preserving Iterated Hashing: ROX. In Kurosawa,

K., ed.: ASIACRYPT’07. Volume 4833 of Lecture Notes in Computer Science., Springer (2007) 130–146
3. Bellare, M., Ristenpart, T.: Multi-Property-Preserving Hash Domain Extension and the EMD Transform. [30] 299–314
4. Bellare, M., Rogaway, P.: Collision-Resistant Hashing: Towards Making UOWHFs Practical. In Jr., B.S.K., ed.:

CRYPTO. Volume 1294 of Lecture Notes in Computer Science., Springer (1997) 470–484
5. Biham, E., Chen, R., Joux, A., Carribault, P., Lemuet, C., Jalby, W.: Collisions of SHA-0 and Reduced SHA-1. [11]

36–57
6. Biham, E., Dunkelman, O.: A Framework for Iterative Hash Functions — HAIFA. Presented at the second NIST hash

workshop (August 24-25, 2006) (2006)
7. Biryukov, A., Shamir, A.: Cryptanalytic Time/Memory/Data Tradeoffs for Stream Ciphers. In Okamoto, T., ed.:

ASIACRYPT. Volume 1976 of Lecture Notes in Computer Science., Springer (2000) 1–13
8. Brassard, G., ed.: CRYPTO ’89, Santa Barbara, California, USA, August 20-24, 1989, Proceedings. In Brassard, G.,

ed.: CRYPTO. Volume 435 of Lecture Notes in Computer Science., Springer (1990)
9. Cobham, A.: Uniform tag seqences. Mathematical Systems Theory 6(3) (1972) 164–192
10. Coron, J.S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-damgård revisited: How to construct a hash function. In:

CRYPTO’05. (2005) 430–448
11. Cramer, R., ed.: Advances in Cryptology - EUROCRYPT 2005, 24th Annual International Conference on the Theory

and Applications of Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005, Proceedings. In Cramer, R., ed.:
EUROCRYPT’05. Volume 3494 of Lecture Notes in Computer Science., Springer (2005)

12. Damgård, I.: A Design Principle for Hash Functions. [8] 416–427
13. de Cannière, C., Mendel, F., Rechberger, C.: Collisions for 70-Step SHA-1: On the Full Cost of Collision Search. In

Adams, C.M., Miri, A., Wiener, M.J., eds.: Selected Areas in Cryptography. Volume 4876 of Lecture Notes in Computer
Science., Springer (2007) 56–73

14. de Cannière, C., Rechberger, C.: Finding SHA-1 Characteristics: General Results and Applications. [30] 1–20
15. de Cannière, C., Rechberger, C.: Preimages for Reduced SHA-0 and SHA-1. In Wagner, D., ed.: CRYPTO. Volume

5157 of Lecture Notes in Computer Science., Springer (2008) 179–202
16. Dean, R.D.: Formal Aspects of Mobile Code Security. PhD thesis, Princeton University (January 1999)
17. Ehrenfeucht, A., Lee, K.P., Rozenberg, G.: Subword Complexities of Various Classes of Deterministic Developmental

Languages without Interactions. Theor. Comput. Sci. 1(1) (1975) 59–75
18. Feller, W.: 12. In: An Introduction to Probability Theory and Its Applications. Volume 1. John Wiley & Sons (1971)
19. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas, J., Walker, J.: The Skein Hash

Function Family. Submission to NIST (Round 1) (2008)
20. Halevi, S., Krawczyk, H.: Strengthening Digital Signatures Via Randomized Hashing. In Dwork, C., ed.: CRYPTO.

Volume 4117 of Lecture Notes in Computer Science., Springer (2006) 41–59
21. Hellman, M.E.: A Cryptanalytic Time-Memory Trade Off. In: IEEE Transactions on Information Theory. Volume 26.

(1980) 401–406
22. Janson, S., Lonardi, S., Szpankowski, W.: On average sequence complexity. Theor. Comput. Sci. 326(1-3) (2004)

213–227
23. Joux, A.: Multicollisions in Iterated Hash Functions. Application to Cascaded Constructions. In Franklin, M.K., ed.:

CRYPTO’04. Volume 3152 of Lecture Notes in Computer Science., Springer (2004) 306–316
24. Joux, A., Lucks, S.: Improved Generic Algorithms for 3-Collisions. [34] 347–363
25. Joux, A., Peyrin, T.: Hash Functions and the (Amplified) Boomerang Attack. In Menezes, A., ed.: CRYPTO. Volume

4622 of Lecture Notes in Computer Science., Springer (2007) 244–263
26. Kelsey, J., Kohno, T.: Herding Hash Functions and the Nostradamus Attack. In Vaudenay, S., ed.: EUROCRYPT.

Volume 4004 of Lecture Notes in Computer Science., Springer (2006) 183–200
27. Kelsey, J., Schneier, B.: Second Preimages on n-Bit Hash Functions for Much Less than 2n Work. [11] 474–490

28. Keränen, V.: Abelian Squares are Avoidable on 4 Letters. In Kuich, W., ed.: ICALP. Volume 623 of Lecture Notes in
Computer Science., Springer (1992) 41–52

29. Klima, V.: Tunnels in Hash Functions: MD5 Collisions Within a Minute. Cryptology ePrint Archive, Report 2006/105
(2006) http://eprint.iacr.org/.

30. Lai, X., Chen, K., eds.: Advances in Cryptology - ASIACRYPT 2006, 12th International Conference on the Theory
and Application of Cryptology and Information Security, Shanghai, China, December 3-7, 2006, Proceedings. In Lai,
X., Chen, K., eds.: ASIACRYPT. Volume 4284 of Lecture Notes in Computer Science., Springer (2006)

31. Leurent, G.: Md4 is not one-way. In Nyberg, K., ed.: FSE. Volume 5086 of Lecture Notes in Computer Science.,
Springer (2008) 412–428

32. Leurent, G.: Practical key-recovery attack against APOP, an MD5-based challenge-response authentication. IJACT
1(1) (2008) 32–46

33. Lucks, S.: A Failure-Friendly Design Principle for Hash Functions. In Roy, B.K., ed.: ASIACRYPT. Volume 3788 of
Lecture Notes in Computer Science., Springer (2005) 474–494

34. Matsui, M., ed.: Advances in Cryptology - ASIACRYPT 2009, 15th International Conference on the Theory and
Application of Cryptology and Information Security, Tokyo, Japan, December 6-10, 2009. Proceedings. In Matsui, M.,
ed.: ASIACRYPT. Volume 5912 of Lecture Notes in Computer Science., Springer (2009)

35. Matusiewicz, K., Naya-Plasencia, M., Nikolic, I., Sasaki, Y., Schläffer, M.: Rebound attack on the full lane compression
function. [34] 106–125

36. Mendel, F., Peyrin, T., Rechberger, C., Schläffer, M.: Improved Cryptanalysis of the Reduced Grøstl Compression
Function, ECHO Permutation and AES Block Cipher. In Jr., M.J.J., Rijmen, V., Safavi-Naini, R., eds.: Selected Areas
in Cryptography. Volume 5867 of Lecture Notes in Computer Science., Springer (2009) 16–35

37. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The Rebound Attack: Cryptanalysis of Reduced Whirlpool
and Grøstl. In Dunkelman, O., ed.: FSE. Volume 5665 of Lecture Notes in Computer Science., Springer (2009) 260–276

38. Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography
39. Merkle, R.C.: One Way Hash Functions and DES. [8] 428–446
40. Naor, M., Yung, M.: Universal One-Way Hash Functions and their Cryptographic Applications. In: STOC, ACM

(1989) 33–43
41. Pansiot, J.J.: Complexité des Facteurs des Mots Infinis Engendrés Par Morphismes Itérés. In Paredaens, J., ed.: 11th

ICALP, Antwerpen. Volume 172 of LNCS., Springer (july 1984) 380–389
42. Pleasants, P.A.: Non-repetitive sequences. Mat. Proc. Camb. Phil. Soc. 68 (1970) 267–274
43. Rivest, R.L.: Abelian Square-Free Dithering for Iterated Hash Functions. Presented at ECRYPT Hash Function Work-

shop, June 21, 2005, Krakow, and at the Cryptographic Hash workshop, November 1, 2005, Gaithersburg, Maryland
(2005)

44. Rogaway, P., Shrimpton, T.: Cryptographic Hash-Function Basics: Definitions, Implications, and Separations for
Preimage Resistance, Second-Preimage Resistance, and Collision Resistance. In Roy, B.K., Meier, W., eds.: FSE.
Volume 3017 of Lecture Notes in Computer Science., Springer (2004) 371–388

45. Sasaki, Y., Aoki, K.: Finding preimages in full md5 faster than exhaustive search. In Joux, A., ed.: EUROCRYPT.
Volume 5479 of Lecture Notes in Computer Science., Springer (2009) 134–152

46. Shoup, V.: A Composition Theorem for Universal One-Way Hash Functions. In Preneel, B., ed.: EUROCRYPT’00.
Volume 1807 of Lecture Notes in Computer Science., Springer (2000) 445–452

47. Shoup, V., ed.: Advances in Cryptology - CRYPTO 2005: 25th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 14-18, 2005, Proceedings. In Shoup, V., ed.: CRYPTO. Volume 3621 of Lecture
Notes in Computer Science., Springer (2005)

48. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the Hash Functions MD4 and RIPEMD. [11] 1–18
49. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. [47] 17–36
50. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. [11] 19–35
51. Wang, X., Yu, H., Yin, Y.L.: Efficient Collision Search Attacks on SHA-0. [47] 1–16

A A Suffix-Friendly Set for zShoup

0

1

2

0

010

3

2

3

4

0102010

010

0102010

010201030102010

6

5

5

4

5

4

4

3

010201030102010401020103010201050102010301020104010201030102010

0102010301020104010201030102010

0102010301020104010201030102010

010201030102010

0102010301020104010201030102010

010201030102010

010201030102010

0102010

8

7

7

6

7

6

6

5

7

6

6

5

6

5

5

4

0102010301020104010201030102010

0102010301020104010201030102010

0102010301020104010201030102010

0102010301020104010201030102010

010201030102010

7

6

7

6

7

6

7

6
6

5
0102010301020104010201030102010

7

6
The numbers mentioned in the figure refer to the masks in use (i.e., 0 corresponds to µ0 and 0102 corresponds to four

invocations of the compression function using µ0, µ1, µ0, µ2 as masks (in that order)).

Fig. 8: A suffix-friendly set of 2k factors of for zShoup.

