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Abstract
We present attacks on a generalized subset-sum pseudorandom generator, which was proposed by
von zur Gathen and Shparlinski in 2004. Our attacks rely on a sub-quadratic algorithm for solving
a vectorial variant of the 3SUM problem, which is of independent interest. The attacks presented
have complexities well below the brute-force attack, making the generators vulnerable. We provide
a thorough analysis of the attacks and their complexities and demonstrate their practicality through
implementations and experiments.
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1 Introduction

A pseudo-random number generator is a deterministic algorithm that runs in polynomial time
using a short random seed as its input, and produces a long sequence that is indistinguishable
from a truly random sequence in polynomial time. The versatile applications of pseudo-
random numbers have been extensively explored in the literature, particularly in cryptography
where they are employed for tasks such as key generation, encryption, and digital signatures.

In 1985, Rueppel and Massey introduced the knapsack generator (or subset sum generator)
[16] whose security ultimately relies on the NP-hard modular subset sum problem: given
integers ω0, . . . , ωn−1, t and q, find a subset of the ωi’s that sum to t modulo q, i.e. to find
bits x0, . . . , xn−1 ∈ {0, 1} such that

n−1∑
i=0

xiωi = t mod q.
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23:2 Cryptanalysis of a Generalized Subset-Sum Pseudorandom Generator

In the knapsack generator, the modulus q is usually taken as a power of 2, q = 2n, the
weights ω0, . . . , ωn−1 are kept secret and given n secret control bits u0, . . . , un−1, one extends
them using a linear feedback generator (a fast but non-cryptographically secure pseudo-
random number generator) to obtain a flow of pseudo-random bits (ui)0≤i≤N+n−2. For
i ∈ {0, . . . , N − 1}, one then computes

vi =
n−1∑
j=0

ui+jωj mod 2n

and outputs yi which are the ρ = n− ℓ leading bits of vi where ℓ is a given parameter.
In 2011, Knellwolf and Meier [12] presented a cryptanalysis of this generator. They used

a guess-and-determine strategy coupled with lattice-based techniques to recover most of the
key in relevant instances of the generator. In order to run said attack, they needed to guess
all the n initial control bits. Hence their attack had a time complexity Ω(2n). In 2009, Von
zur Gathen and Shparlinski [20] presented the fast knapsack generator that had a far smaller
key and was sensibly faster but had not undergone a serious cryptanalysis until recently [14].
We consider another variant of the subset sum pseudorandom generator, suggested by von
zur Gathen and Shparlinski in 2004 [19].

The family of generators proposed by von zur Gathen and Shparlinski can be described
in an abstract way using two integer parameters λ and n and three independent components:

a control-sequence generator CSG : {0, 1}λ × N→ {0, 1}n;
an Abelian cyclic group (G, +) of order q where the group law is denoted additively;
a deterministic and public conversion function Ψ : G → {0, 1}ρ where ρ denotes the
output length of the pseudo-random generator.

The seed of this generalized subset-sum generator consists in a bit-string seed0 ∈ {0, 1}λ and
n group elements P1, . . . , Pn ∈ G. The bit size of the seed is thus equal to λ + n · ⌈log2(q)⌉.
At each iteration i ∈ N, the control-sequence generator generates an n-bit string vi =
(v1

i , . . . , vn
i ) = CSG(seed0, i), computes the group element Qi defined by

Qi = [v1
i ]P1 + · · ·+ [vn

i ]Pn ∈ G

and outputs si = Ψ(Qi) ∈ {0, 1}ρ.

In the Rueppel-Massey classical subset sum generator, the group G is thus the group of
modular residue G = Zq, the control-sequence generator is defined by a linear feedback shift
register and the conversion function is a truncation. In [19], von zur Gathen and Shparlinski
proposed to use for G the group of rational points of an elliptic curve defined over a (prime)
finite field, a linear feedback shift register as the control-sequence generator and again a
truncation for the conversion function (more precisely, truncation of the x-coordinate of the
elliptic curve point Qi). They proposed to use λ = n and an elliptic curve defined over a
finite field Zp where p is a n-bit prime number. By the Hasse-Weil theorem [9], the number
of group elements q is around 2n and the total seed size is ≃ n + n · n = n · (n + 1). They
suggested that Ψ should discard ℓ = log2(n) low-order bits of the x-coordinate of the point
before using it as pseudo-random output.

Von zur Gathen and Shparlinski claimed that: “the only available attack on this generator
is the brute force search over all parameters defining this generator” and thus using n

as small as 12 should provide a 128-bit security level. The statistical properties of the
sequences generated by this pseudo-random generator were analyzed in [4, 1, 8] but its
cryptographic security has not been studied up to the present article. We present a simple
attack against this generator and a lattice-based attack on another variant derived from this
abstraction. In the instantiation suggested by von zur Gathen and Shparlinski, our attack
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has complexity O
(
21.78n

)
well below the O

(
2n(n+1)) brute-force attack. Our attacks rely on

a sub-quadratic algorithm for solving a vectorial variant of the 3SUM problem, which is of
independent interest. We provide a thorough analysis of the attacks and their complexities,
and demonstrate their practicality through implementations and experiments.

2 High-level description of the attack

We consider the case where the control sequence generated by the CSG is known by the
adversary. If this is not the case, they can simply try all possible values for seed0 ∈ {0, 1}λ

which increases the complexity of the attack by a multiplicative factor 2λ.
We assume that the control sequence generator outputs uniform and independent n-bit

strings vi = CSG(seed0, i) for each i ∈ N. Note that in the concrete schemes that we attack,
this is obviously false; we nevertheless carry our analysis under this assumption and our
experimental results will show that it actually holds in practice.

Let us suppose that an adversary finds three indices i, j, k such that vi + vj = vk as
vectors of integers, i.e. where the addition is performed coordinate-wise over Z. In this case,
the adversary knows that the relation Qi + Qj = Qk holds in the group G. They are not
given the actual values of the points Qi, Qj and Qk but only the values Ψ(Qi), Ψ(Qj) and
Ψ(Qk). Assume that the number of preimages through Ψ is limited and that the adversary
can efficiently compute them; they can simply check if Ψ(X + Y ) = Ψ(Qk) for all (X, Y )
such that Ψ(X) = Ψ(Qi) and Ψ(Y ) = Ψ(Qj). If there exists only one such pair (X, Y ) then
the adversary can safely assume that Qi = X, Qj = Y (and Qk = X + Y ).

The number of pairs (X, Y )’s such that

Ψ(X + Y ) = Ψ(Qk) (1)

is difficult to estimate and depends heavily on the group G and the conversion function Ψ.
In [17], Shoup studied the computational complexity of the discrete logarithm in Abelian
groups in the context of algorithms which do not exploit any special properties of the
encodings of group elements. Shoup introduced the generic group model where each group
element is encoded as a unique and arbitrary binary string (picked uniformly at random
and independent of the actual group structure). As a consequence, it is not possible for an
algorithm in this model to exploit any special properties of the encodings and group elements
can only be operated on using an oracle that provides access to the group operations. If we
make a similar assumption on the group G and the conversion function Ψ is a truncation
of ℓ bits out of the (log2 q)-bit encodings of group elements, then we can expect that the
number of preimages is close to 2ℓ and the number of pairs (X, Y ) different from (Qi, Qj)
for which (1) holds is expected to be

2ℓ · 2ℓ/2log2(q)−ℓ ≃ 23ℓ/q. (2)

In particular if ρ > 2 · log2(q)/3, one expects the number of candidates for (Qi, Qj , Qk) to be
constant in a “generic” group. It is worth mentioning that this assumption does not hold in
the classical knapsack generator that uses the group G = Zm since in this case, the number
of candidates for a single equation will be about 22ℓ.

Each relation vi + vj = vk gives two relations in the group G:

Qi = v1
i P1 + · · ·+ vn

i Pn and Qj = v1
j P1 + · · ·+ vn

j Pn

If the adversary collect sufficiently many linearly independent such relations, they would be
able to retrieve all the weights used in the generalized knapsack generator.

MFCS 2023
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Table 1 Tabulating all solutions of x + y = z for x, y, z ∈ {0, 1}.

x 0 0 0 0 1 1 1 1
y 0 0 1 1 0 0 1 1
z 0 1 0 1 0 1 0 1

x + y 0 0 1 1 1 1 2 2

In the following, we describe and analyse an algorithm to find “good triplets” of indices
(i, j, k) such that vi +vj = vk and show how to use it to attack the elliptic knapsack generator
when ρ = n− log2(n) (as suggested by von zur Gathen and Shparlinski).

3 Finding “Good Triplets”

Assume that three lists A, B, and C, each of size N , are made of uniformly random n-bit
strings. Let Y be the random variable that counts the number of triplets (x, y, z) ∈ A×B×C

such that x + y = z when x, y and z are seen over Zn and not modulo 2. When this relation
holds, we call (x, y, z) a “good triplet”. Our goals in this section are twofold: 1) lower-bound
the probability that A, B and C contain a good triplet and 2) design an algorithm to find
good triplets efficiently.

As a warm-up, examining the simplest case (n = 1) is interesting (cf. Table 1). Looking
at this table, we see that Pr(x + y = z) = 3/8. We next prove the following

▶ Theorem 1. E (Y ) = N3
(

3
8

)n

, and Pr(Y = 0) ≤ 1
N3

(
8
3

)n

+ 3
N

(
10
9

)n

+ 3
N2

(
4
3

)n

.

The proof is given in Appendix A. It boils down to estimating the variance of Y and using
the second-moment inequality. With N = α(8/3)n/3, Theorem 1 yields:

Pr(Y = 0) ≤ 1
α3 + 3

α
(0.801...)n + 3

α2 (0.69...)n.

Therefore, setting α = 10 is sufficient to ensure that a good triplet exists with probability
99.9%. In addition, it follows from the theorem that

Pr(Y = 0) ≤ 1
E (Y ) + 3

(E (Y ))2/3 + 3
(E (Y ))1/3 . (3)

3.1 A Simple Sub-Quadratic Algorithm to Find Good Triplets
Finding a “good triplet” (such that x + y = z) can be done using a naive quadratic algorithm:
for all pairs (x, y) in A × B, check if x + y ∈ C; if so, return (x, y, x + y) ; after this loop,
return ⊥ (to handle the case where the algorithm fails). This could potentially be sped up a
little by exploiting the fact that x and y are necessarily disjoint.

In this section, we present a simple algorithm to find a good triplet more efficiently. We
work under the assumption that the input lists have size N := α(8/3)n/3 for some constant
α ≥ 4. Under this condition, (3) ensures that there is a good triplet with probability at least
3

64 . This assumption will be relaxed in the next section.
Looking again at Table 1, we see that Pr(x = 1 | x+y = z) = 1/3 while Pr(z = 1 | x+y =

z) = 2/3. In other terms, even though x, y, z are sampled uniformly at random, if we restrict
our attention to good triplets, then x and y are biased towards zero (sparse) while z is biased
towards 1 (dense).
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This observation suggests an algorithm to find good triplets efficiently: remove from A, B

(resp. C) input vectors of Hamming weight different from n/3 (resp. 2n/3), then run the
naive quadratic algorithm on what remains.

▶ Theorem 2. This algorithm terminates in O (Ne) with e = 2 ln(9/4)/ ln(8/3) ≈ 1.654 and
succeeds with probability Ω

( 1
n

)
.

Proof. Let H denote the binary entropy function, meaning that H(x) = −x log2(x)− (1−
x) log2(1− x), for all 0 < x < 1. The following standard bounds for the binomial coefficient
can be derived from Stirling’s formula:

2nH(x)√
8nx(1− x)

≤
(

n

xn

)
≤ 2nH(x)√

2πnx(1− x)
, (0 < x < 1/2) (4)

It follows from the discussion juste before the statement of the theorem that there are 3n

good triplets on n bits (out of 8n triplets in total). The number of good triplets that satisfy
the weight condition imposed by the algorithm is

N =
(

n

n/3, n/3, n/3

)
=

(
n

2n/3

)(
2n/3
n/3

)
≥ 2nH(2/3)
√

n4/3
22n/3

2
√

n/3
= 3
√

3
8n

3n.

If the input list contain a good triplet, then the algorithm described above returns it with
probability greater than 0.65/n. The claimed time complexity is in fact a consequence of the
next theorem (Theorem 5), and we will therefore not prove it here. ◀

3.2 Sub-Quadratic Algorithm with Overwhelming Success Probability
We generalize the algorithm of the previous section by relaxing the weight condition. This
yields Algorithm 1. It takes an additional argument w controlling the maximum allowed
weight. In the sequel, all the stated complexities must be understood “up to a constant
factor”. Let ϵ denote a constant in the open interval

(
0; 1

6
)
. Let X ∼ B(n, p) be a binomial

random variable. We will use the classical inequality (5) given below, a proof of which can
be found in [2] amongst others. Here, D(a, p) is the Kullback-Leibler divergence between an
a-coin and a p-coin:

Pr(X ≤ an) ≤ exp(−nD(a, p)) if a < p. (5)
Pr(X ≥ an) ≤ exp(−nD(a, p)) if a > p,

D(a, p) = a ln a

p
+ (1− a) ln 1− a

1− p
.

We denote by wt(x) the Hamming weight of a bit string x.

Algorithm 1 Find good triplets.
1: function FindTriplet(A, B, C, w)
2: A′ ← {x ∈ A | wt(x) ≤ w}
3: B′ ← {y ∈ B | wt(y) ≤ w}
4: for all x, y ∈ A′ ×B′ do
5: if x + y ∈ C then
6: return (x, y, z)
7: return ⊥

MFCS 2023
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▶ Lemma 3. With w = n
( 1

3 + ϵ
)
, if the input contains a good triplet, then Algorithm 1

returns ⊥ with probability less than 2 exp(−2nϵ2).

Proof. Assume that the input lists contain a good triplet (x∗, y∗, z∗). It will be discarded if
and only if the weight of either x∗, y∗ is greater than w. We know that the weight of x∗ and
y∗ follows a binomial distribution of parameters (n, 1/3), therefore (5) shows that either has
weight greater than n(1/3 + ϵ) with probability less than exp(−nD(1/3 + ϵ, 1/3)).

The (“well-known”) fact that D(p + ϵ, p) ≥ 2ϵ2 combined with union bound (for x∗ and
y∗) then yields the announced result. ◀

▶ Lemma 4. Let T denote the running time of Algorithm 1 with w = n
( 1

3 + ϵ
)
. Then

E [T ] ≤ N + N2 exp
[
−2nD

( 1
3 + ϵ, 1

2
)]

.

Proof. Filtering the input lists and keeping only low-weight vectors can be done in linear
time. Given the complexity of the naive quadratic algorithm, the total time complexity is
simply T = N + |A′| · |B′|.

Let X ∼ B(n, 1/2) be a binomial random variable modeling the weight of a random
n-bit vector. Such a vector belongs to A′ or B′ if its weight is less than or equal to w,
and this happens with probability s := Pr(X ≤ w). The binomial tail bound (5) yields
s ≤ exp

[
−nD

( 1
3 + ϵ, 1

2
)]

.
The sizes of A′ and B′ are stochastically independent random variables following a

binomial distribution of parameters (N, s) with expectation Ns. The expected running time
of the quadratic algorithm on A′ and B′ is therefore E (|A′| × |B′|) = E |A′| × E |B′| = N2s2.
Combining this with the upper bound on s gives the announced result. ◀

▶ Theorem 5. Write e = 2 · ln(9/4)
ln(8/3) ≈ 1.654 For all d > e there is an algorithm that runs

in time O
(
Nd

)
, where N denotes the size of the input list and fails to reveal a good triplet

present in the input with negligible probability (in n).

Proof. Let e < d < 2 be a complexity exponent greater than the bound e given in the
statement of the theorem. There always exist ϵ > 0 such that

d = 2− 6
D

( 1
3 + ϵ, 1

2
)

1
3 ln 8

3 + ϵ ln 2
.

Indeed, setting ϵ = 0 in this expression yields the lower-bound exponent e of the theorem,
and the expression of d is increasing as a function of ϵ; it reaches d = 2 for ϵ = 1/6.

Let N0 := (8/3)n/3, so that input lists of size N0 contain a single good triplet in average.
We distinguish two cases depending of the size of the input lists.

Suppose that N ≤ 2ϵnN0, where N denotes the size of the input lists. In this case
run Algorithm 1 with w = n

( 1
3 + ϵ

)
. Lemma 3 guarantees the exponentially small failure

probability while lemma 4 tells us that the expected running time T is less than N +
N2 exp[−2nD

( 1
3 + ϵ, 1

2
)
].

A quick calculation shows that the algorithm then runs in time O
(
Nd

)
– the value of d

has been chosen for this purpose. The theorem is proved in this case.
If N > 2nϵN0, then slice the input lists in chunks of size 4N0 and run Algorithm 1 with

w = n/3 on each successive chunk until a solution is found. Each chunk contains a good
triplet with probability at least 3

64 thanks to (3). The algorithm reveals this triplet, if it
exists, with probability Ω

( 1
n

)
, because it always works if the algorithm of the previous

section works.
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There are 2ϵn/4 chunks (i.e., exponentially many). Because the chunks are disjoint parts
of the input lists, success in a chunk is independent from the others. Therefore the probability
that this process fails to reveal a good triplet is negligible. The running time of this procedure
is O

(
NNe−1

0
)
. Because N0 ≤ N , this is less than O (Ne). ◀

▶ Remark 6. Ab, Bb and Cb the subsets of strings of A, B and C whose first bit is equal to b

(for b ∈ {0, 1}), then a good triplet necessarily belongs to one of the three sets A0 ×B0 ×C0,
A0 ×B1 ×C1 or A1 ×B0 ×C1 (and the search for a good triplet in A×B ×C thus reduces
to the search in those three sets). The expected cardinality of A0, A1, B0, B1, C0 and C1 is
N/2 and applying this idea recursively, one obtains (assuming the division is always done
in a “balanced” manner) a time complexity T (N) which heuristically satisfies the recursion
T (N) = 3T (N/2) + O(N) (and thus T (N) = O(N log2(3)) = O(N1.59)). This improves a bit
the complexity of our algorithm, but this “divide-and-conquer” approach is probably more
complex to implement. It would be interesting to see if one can combine this approach with
our filtering technique.

4 Practical Key-recovery Attack on the von zur Gathen-Shparlinski
Elliptic Subset Sum Generator

In this section, we consider the instantiation of the knapsack generator suggested by
von zur Gathen and Shparlinski in [19]. In particular, the group G is an elliptic curve
E defined over a (prime) finite field Fp (where p ≥ 5 is an n-bit prime number). It is a
rational curve given by the following Weierstrass equation

E : y2 = x3 + ax + b

for some a, b ∈ Fp with 4a3 + 27b2 ̸= 0. It is well known that the set E(Fp) of Fp-rational
points (including the special point O at infinity) forms an Abelian group with an appropriate
composition rule (denoted additively) where O is the neutral element – for more details
on elliptic curves, we refer to [5, 21]. Von zur Gathen and Shparlinski suggested to use a
conversion function Ψ : E → {0, 1}ρ that simply truncates ℓ = log2(n) least significant bits
of the x-coordinate of a point (with ρ = n− ℓ). An n-bit linear feedback shift register is used
as the control-sequence generator (as in the Rueppel-Massy classical knapsack generator)
and the overall seed length is thus n(n + 1) bits.

4.1 Attack on the Elliptic Subset Sum Generator
The adversary first “guesses” seed0. In other terms, all subsequent steps have to be repeated
2n times, one for each possible value of seed0.

Following the analysis from Section 3, one needs to construct three sets A, B, C of
independent n-bit strings size N = α(8/3)n/3 ≤ α20.472n in order to find a good triplet
(i, j, k) such that vi + vj = vk time O

(
N1.654...

)
= O

(
20.78n

)
with probability at least

1 − 7/α. We need to have n/2 such good triplets in order to find the n points P1, . . . , Pn

used as weights in this elliptic knapsack generator, and we can hope to obtain them with
constant positive probability from an output sequence made of Ω

(
n2(8/3)n/3)

output values
in {0, 1}ρ. In our implementation, we do not distinguish the sets A, B, and C and simply
run the algorithm from the previous section with A = B = C the sets of all vectors vi
corresponding to all known outputs si ∈ {0, 1}ρ.

Note that, as in the classical knapsack generator, the control sequence is not made of
independent n-bit strings since if one denotes (un)n≥0 the sequence output by the linear
feedback shift register, we have

vi = (v1
i , . . . , vn

i ) = (ui, ui+1, . . . , ui+n−1) ∈ {0, 1}n

MFCS 2023
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for i ∈ N. The analysis given in Section 3 does not apply to such sequences but we make the
heuristic assumption that these n-bit tuples are “sufficiently” random and that our algorithm
will succeed with a similar probability (this heuristic is validated by our experiments).

We then follow the general idea given above but for each good triplet (i, j, k) such that
vi + vj = vk, if the adversary finds two points X and Y on the elliptic curve such that
Ψ(X) = si, Ψ(Y ) = sj and Ψ(X + Y ) = sk, then this gives rise to two possible relations:
1. X = Qi, Y = Qj (and X + Y = Qi + Qj = Qk), but also
2. X = −Qi, Y = −Qj (and X + Y = −(Qi + Qj) = −Qk).
This is due to the fact that on an elliptic curve, a point and its negative have representations
with much in common since they share the same the x-coordinate (and the y-coordinates
are opposites). This “non-genericness” of elliptic curves is well-known and has important
consequences in cryptography1. However, with a truncation of log2(n) bits of the x-coordinate
of the points, we expect the number of points triple compatible with (si, sj , sk) to be equal
to only 2.

Note that for the first good triplet computed in the attack, the sign is not a problem
since the generator parametrized with the n points P1, . . . , Pn outputs the same sequence
as the one parametrized with the n points −P1, . . . ,−Pn. The adversary can then pick up
arbitrarily (Qi, Qj) = (X, Y ) or (Qi, Qj) = (−X,−Y ). However, for the subsequent relations
obtained from other good triplets, the sign choice may be incompatible with the first one
and this will result in a system with no solutions. In order to be able to solve the system,
we need to have n linear relations among the points P1, . . . , Pn and each good triplet gives
us two such relations (the third one is by construction is a linear combination of the two
others and is useless in solving the linear system). Assuming that n is even, one needs to
make n/2− 1 choices for the sign of each relation (after the first one), and the adversary can
simply “guess” all such signs. This multiplies the running time of the algorithm by a factor
2n/2−1.

Once the n/2 good triplets have been found, the algorithm can inverse the system and
obtain the n points P1, . . . , Pn. From these values, the points P1, . . . , Pn. The overall
complexity of the attack is thus

O
(

2n(20.78n + 22 log(n) + 2n/2−1) + poly(n)
)

= O
(
21.78n

)
binary operations.

4.2 Experimental Results
We implement our attack using sagemath v.9.5 on a laptop. Our codes are available at
https://github.com/floretteM/Knapsack. In our implementation, we did not need the
exhaustive search on the signs mentioned above since we instead looked for good triplets
that involve a point already found (and this sets up the sign with certainty). This makes the
probability of finding such good triplets more complex to analyse but this trick works well in
practice.

We first consider the elliptic curve defined by the equation y2 = x3 + 5x + 5 over Fp

where p = 216 − 15. This curve contains q = 65111 points. We present the attack when
the control sequence (vi) is known and we consider n = 16 as suggested by von zur Gathen
and Shparlinski. The key size in this setting is equal to 256 bits. We present in Table 2
the number m of outputs needed and the time necessary to recover the secret weights with
probability at least 50% when ℓ bits are missing.

1 For instance, the ECDSA signature scheme is malleable in the sense that if the pair of integers (r, s) is

https://github.com/floretteM/Knapsack
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Table 2 Key-recovery with exhaustive search and q a 16-bit integer.

ℓ 1 2 3 4 5 6
m 1000 1000 1000 1000 1000 1885

time 6.9s 5.3s 5.6s 5.02s 5.7s 26.7s

When 7 bits are truncated we cannot recover the weights even with 3000 outputs. But
we earlier observed that the algorithm would not work well if ℓ > log2(q)/3, see (2). With
the proposed choice of ℓ = log2 n = 5, our results are coherent with the heuristic.

To test the limits of our attack, we also implement it for elliptic curves with larger group
orders (i.e. for parameters larger than those suggested by von zur Gathen and Shparlinski).
This gives an algorithm with overall complexity O

(
2n(20.78n + 2n/2) · poly(n, log(p))

)
.

We consider the elliptic curve defined by the equation y2 = x3 + x + 14 over Fp where
p = 240 + 15 but still n = 16. With this choice we can focus on recovering the points of the
elliptic curves from the outputs without being to bothered by finding the good triplets. This
curve contains q = 1099510687747 points. We present in Table 3 the number m of outputs
needed and the time necessary to recover the secret weights with probability at least 50%
when ℓ bits are missing.

Table 3 Key-recovery with exhaustive search and q a 40-bit integer.

ℓ 1 2 3 4 5 6 7 8 9
m 1885 1885 1885 1885 1885 1885 1885 1885 1750

time 2.1s 2.1s 2.08s 2.5s 2.6s 2.1s 3.5s 8.3s 26.7s

5 Practical Key-recovery Attack on the Subset Product Generator

Following the generalization of the knapsack generator to elliptic curves proposed by von
zur Gathen and Shparlinski, it is natural to consider other variants using Abelian groups of
interest in cryptography. The most natural choice is to use (a subgroup of) the multiplicative
group of a finite field Zp for some prime number p. This group is certainly not generic since
there exist sub-exponential time discrete logarithm algorithms in these groups, but it seems
that representation of group elements by the unique member of its class in {0, . . . , p− 1} is
sufficiently “generic” that using truncation of their bit-representation as a conversion function
would permit an adversary to mount a lattice-based attack on this generator even if a quarter
of the bits of each group elements is discarded when computing the output of the generator.

More precisely, in this section, we consider a multiplicative variant of the subset sum
generator where:

the control-sequence generator is a linear feedback shift register with a λ-bit seed;
the Abelian cyclic group (G, ·) is the multiplicative group of a (prime) finite field Zp (note
that it is denoted multiplicatively);
the public conversion function Ψ : G → {0, 1}ρ where ρ = ⌊α · log2(p)⌋ is simply the
truncation of ⌈(1− α) log2(p)⌉ bits of the unique member of its group element class in
{0, . . . , p− 1}. The notation ÷ denotes the euclidean division.

a valid signature of a given message then so is (r, −s) [18].

MFCS 2023
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We call this generator the subset product generator.

5.1 Description of the Attack
In this setting, the seed consists in a bit-string seed0 ∈ {0, 1}λ and n group elements
g1, . . . , gn ∈ Z∗

p. The bit size of the seed is thus equal to λ + n · ⌈log2(p)⌉. At each
iteration i ∈ N, the control-sequence generator generates an n-bit string vi = (v1

i , . . . , vn
i ) =

CSG(seed0, i), computes the group element hi defined by

hi = g
v1

i
1 · · · g

vn
i

n ∈ Z∗
p

and outputs si = Ψ(hi) = hi div 2ℓ ∈ {0, 1}k where p is a (k + ℓ) -bit long prime number
(with k = ⌊α · log2(p)⌋).

A straightforward adaptation of the attack of the Section 4 gives an attack with complexity
O(2λ · (20.78n + p2(1−α)) for α ≥ 2/3. Note that the complexity does not involve the O(2n/2)
term that came from the indecision on the signs in the elliptic curve variant of the knapsack
generator. We remark that one can improve the complexity of the attack by replacing the
brute-force search on the missing bits with the use of Coppersmith technique to retrieve
them.

Coppersmith’s method. Coppersmith’s method [7, 6] is a technique to find small integer
zeroes of univariate or bivariate polynomials modulo a given integer. It has been generalized
for finding small roots of (modular) multivariate polynomial equations with integer coefficients
by several authors and notably used to attack algebraic pseudo-random generators (see [11,
10, 3, 14] and references therein). These techniques work by constructing a Euclidean lattice
associated with the system of equations, and then finding short vectors in this lattice using
lattice reduction algorithms. In its most basic variant, given a polynomial f(X1, . . . , Xk)
defined modulo an integer p, one can find a “small” root (x1, . . . , xk) ∈ Zk

p under the
condition that |xi| ≤ Bi for some bounds (B1, . . . , Bk). The method succeeds (heuristically)
in polynomial time when (up to small constant factors),∏

i∈M

Bi1
1 . . . Bik

k ≤ p

when f can be written as a sum of monomials of the form

f(X1, . . . , Xk) =
∑
i∈M

aiX
i1
1 . . . Xik

k

for some ai ∈ Z∗
p. For this simple variant, the lattice is constructed using only the polynomial

f but there exist variants – with better upper-bounds on the root (x1, . . . , xk) – using lattices
of higher dimensions with shifts or powers of the polynomial f (see [11] for details).

Description of the attack. For a vector vi output by the control sequence generator, we
have

hi = g
v1

i
1 · · · g

vn
i

n ∈ Z∗
p

with hi = (2ℓsi + xi) where xi ∈ {0, . . . , 2ℓ − 1} is some value unknown to the adversary.
Given a good triplet (i, j, k) with vi + vj = vk, we have hi · hj = hk mod p and thus:

(2ℓsi + xi) · (2ℓsj + xj) = (2ℓsk + xk) mod p.
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The unknowns (xi, xj , xk) are thus “small” roots of an equation of the form

Axi + Bxj + xixj − xk + C = 0 mod p

where A = 2ℓsi, B = 2ℓsj and C = (2ℓsi·2ℓsj−2ℓsk) mod p are values known by the adversary.
One can thus apply Coppersmith’s technique to this polynomial and the basic technique
(without using shifts or powers of the polynomial) will succeed if |xi|, |xj |, |xk| ≤ p1/5. A
simple trick allows us to improve readily this bound by setting y = xixj − xk such that
|y| ≤ 22ℓ and solving the equation

g(xi, xj , y) = Axi + Bxj + y + C = 0 mod p

in (xi, xj , y) is sufficient to recover (xi, xj , xk). Using the basic Coppersmith’s technique
(again without using shifts or powers of this polynomial), this attack will succeed (heuristically)
in polynomial-time if |xi|, |xj |, |xk| ≤ p1/4. For α ≥ 3/4, we thus obtain an attack with the
overall complexity

O
(
2λ · 20.78n + n · poly(log2(p))

)
= O

(
2λ · 20.78n

)
.

▶ Remark 7. Note that we can improve the bound on the size of the “small” root by using
shifts and powers of the polynomial g(xi, xj , y). For instance, if one considers the family of
fours polynomials

{g, xi · g, xj · g, g2}

that vanishes in (xi, xj , y) modulo p with total multiplicity (1 + 1 + 1 + 2) = 5 and involve
the following set of monomials:

{xi, xj , y, x2
i , xixj , xiy, x2

j , xjy, y2}

with a sum of degrees equal to (1 + 1 + 2 + 2 + 2 + 3 + 2 + 3 + 4) = 20, we obtain that
the Coppersmith’s method succeeds (heuristically) if |xi|, |xj |, |xk| ≤ p5/20 = p1/4 (see [11]).
This gives the same bound as above. However, if we reintroduce the variable xk and replace
the monomial xixj by y + xk, the total degree of the set of monomials decreases to 19 and
this decreases the bound to p5/19. It is possible to decrease a bit further the exponent of p

in this bound, at the cost of using a lattice of higher dimension in Coppersmith’s technique
using the technique of unravelled linearization from [10] (see also [3]).

5.2 Experimental Results
Exhaustive search on the truncated bits. We consider first the finite field Fp with p = 2q+1
and q = 99839. We choose weights in the cyclic multiplicative group G of order q made
by the non-quadratic residues of K minus zero. We present the attack when the control
sequence (vi) is known and we consider n = 16 for which the key size is equal to 256 bits.
We present in Table 4 the number m of outputs needed and the time necessary to recover
the secret weights with probability at least 50% when ℓ bits are missing.

When 7 bits are truncated we cannot recover the weights even with 1885 outputs.
Now we consider the finite field Fp with p = 2q + 1 and

q = 72536599031050480402372360602698911648481683373808860129469667649180998227293

a 256-bit number, but still n = 16. With this choice we can focus on recovering the points
from the outputs without being bothered by finding the good triplets.

MFCS 2023
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Table 4 Key-recovery with exhaustive search and q a 16-bit integer.

ℓ 1 2 3 4 5 6
m 1000 1000 1000 1000 1000 1885

time 0.51s 0.45s 0.44s 0.47s 0.58s 2.1s

Table 5 Key-recovery with exhaustive search and q a 256-bit integer.

ℓ 1 2 3 4 5 6 7 8 9
m 1000 1000 1000 1000 1000 1000 1000 1000 1000

time 0.46s 0.50s 0.48s 0.43s 0.55s 0.70s 0.87s 1.9s 6.6s

Coppersmith method. We consider the attack on the second group with p = 2q + 1
and q a 256-bit number. First, we implement the attack with the single polynomial g =
Axi + Bxj + y + C. As the Coppersmith method is a bit more unpredictable, we present in
Table 6 the number m of outputs needed and the time necessary to recover the weights with
probability at least 50% when ℓ bits are missing.

Table 6 Key-recovery with Coppersmith method and q a 256-bit integer.

ℓ 2 4 8 16 32 62 63
m 1000 1000 1000 1000 1000 1000 1000

time 0.71s 0.67s 0.68s 0.61s 0.63s 0.51s 0.55s

If we follow the heuristic in Coppersmith’s method we should be able to retrieve the
weights up to ℓ = 64 and ℓ = 64 is the first instance where the attack stops working. If we
try to consider the family of polynomials {g, xig, xjg, yg, g2} instead the improvement on
the upper-bound from p1/4 to p5/19 would not be significant for 256-bit integers.
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A Proof of Theorem 1

We now proceed to prove theorem 1.

Proof. Let x, y, z, u, v denote five independent random bits, and set:

ρ = Pr(x + y = z)
σ = Pr(u + v = z | x + y = z)
τ = Pr(u + y = v | x + y = z)

We already know that ρ = 3/8. Building a simple table as above shows that σ = τ = 5/12
(see Table 7).

Table 7 Tabulating u + v, x + y, u + y for x, y, z, u, v ∈ {0, 1}.

u 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
x 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
y 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
z 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

u + v 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
x + y 0 0 1 1 1 1 2 2 0 0 1 1 1 1 2 2
u + y 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

u 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
v 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
x 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
y 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
z 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

u + v 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2
x + y 0 0 1 1 1 1 2 2 0 0 1 1 1 1 2 2
u + y 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2

Let X(i, j, k) denote the binary random variable that takes the value 1 if and only if
A[i] + B[j] = C[k], so that Y =

∑
X(i, j, k). Unless mentioned otherwise, all sums are taken

over 0 ≤ i, j, k < N ; we omit the indices to alleviate notations.
The expected value of Y is easy to determine. Because the elements of the lists are

identically distributed, Pr(A[i] + B[j] = C[k]) is independent of i, j and k and its value is ρn.
We get:

E (Y ) = E
(∑

X(i, j, k)
)

=
∑

E (X(i, j, k)) =
∑

Pr(A[i] + B[j] = C[k]) = N3
(3

8

)n

.

Because Y is the sum of binary random variables, we are entitled to use the “conditional
expectation inequality” [15] (see also [13, MPR]):

Pr(Y > 0) ≥
n∑

i=1

E (Yj)
E (Y | Yi = 1) . (6)

Which, in our case, gives:

Pr(Y > 0) ≥
∑ E (X(i, j, k))

E (Y | X(i, j, k) = 1) .
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As argued above, the value of the term under the sum is independent of i, j and k, so this
boils down to: Pr(Y > 0) ≥

( 3
8
)n

/E(Y | X(0, 0, 0) = 1). It remains to compute the expected
number of good triplets under the assumption that there is at least one. This yields:

E(Y | X(0, 0, 0) = 1) =
∑

Pr(A[i] + B[j] = C[k] | A[0] + B[0] = C[0])

We split this sum into 8 parts by considering separately the situation where i = 0,
j = 0 and k = 0 (resp. ̸= 0 for each summation index). We introduce the shorthand
pijk = Pr (A[i] + B[j] = C[k] | A[0] + B[0] = C[0]) and we assume that i, j, k > 0. Because
A[i] is sampled independently from A[0] (resp. B, C), the two events inside the conditional
probability are in fact independent and therefore pijk =

( 3
8
)n. But when at least one index

is zero, this is no longer the case. The extreme situation is p000 = 1.
When there is a single non-zero summation index, the situation is rather simple. If

x + y = z, then x + U = z if and only if U = y, and this happens with probability 2−n

because U is uniformly random. This shows that pi00 = p0j0 = p00k = 2−n.
It remains to deal with the case of two non-zero summation indices. In fact, pij0 is simply

σn, while both pi0k and p0jk are equal to τn (by the symmetry between the role of the first
two lists).

It follows that

E (Y | X(0, 0, 0) = 1)

= (N − 1)3
(

3
8

)n

+ 3(N − 1)2
(

5
12

)n

+ 3(N − 1) · 2−n + 1

= N3
(

3
8

)n

+ 3N2
(

5
12

)n

+ 3N2−n + 1−∆

with ∆ =
(
3N2 − 3N + 1

) (
3
8

)n

+ 3(2N − 1)
(

5
12

)n

+ 3 · 2−n.

The “error term” ∆ is always positive for N ≥ 1. Going back to the beginning, we have:

Pr (Y > 0) ≥ N3(3/8)n

N3(3/8)n + 3N2(5/12) + 3N(1/2)n + 1−∆

≥ 1
1 + 3N−1(10/9)n + 3N−2(4/3)n + N−3(8/3)n

Using the convexity of x 7−→ 1/(1 + x), we obtain

Pr(Y = 0) ≤ 3N−1(10/9)n + 3N−2(4/3)n + N−3(8/3)n. ◀
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