
Parallel Sparse PLUQ Factorization modulo p

Charles Bouillaguet

Université de Lille, CRIStAL

Cité Scientifique

59650, Villeneuve d’Ascq

charles.bouillaguet@univ-lille1.fr

Claire Delaplace

Université de Lille, CRIStAL

Université de Rennes, IRISA

263 Avenue Général Leclerc

35000, Rennes

claire.delaplace@irisa.fr

Marie-Emilie Voge

Université de Lille, CRIStAL

Cité Scientifique

59650, Villeneuve d’Ascq

marie-emilie.voge@univ-lille1.fr

ABSTRACT
In this paper, we present the results of our experiments to compute

the rank of several large sparse matrices from Dumas’s Sparse Inte-

ger Matrix Collection, by computing sparse PLUQ factorizations.

Our approach consists in identifying as many pivots as possible

before performing any arithmetic operation, based solely on the

location of non-zero entries in the input matrix. These “structural”

pivots are then all eliminated in parallel, in a single pass. We de-

scribe several heuristic structural pivot selection algorithms (the

problem is NP-hard).

These algorithms allows us to compute the ranks of several

large sparse matrices in a few minutes, versus many days using

Wiedemann’s algorithm. Lastly, we describe a multi-thread imple-

mentation using OpenMP achieving 70% parallel efficiency on 24

cores on the largest benchmark.

KEYWORDS
Sparse Linear Algebra, Gaussian Elimination, Structural Pivots,

Parallel Pivots Selection Algorithm

ACM Reference format:
Charles Bouillaguet, Claire Delaplace, and Marie-Emilie Voge. 2017. Parallel

Sparse PLUQ Factorization modulo p . In Proceedings of PASCO ’17,
, July 23–24, 2017, Kaiserslautern, Germany, 10 pages.

DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The PLUQ factorization of an n ×m matrix A is the product A =
PLUQ . There, P ,Q are permutation matrices, L is an n × r lower-
trapezoidal matrix with all non-zero diagonal coefficients, andU
is an r ×m upper-trapezoidal matrix with unit diagonal, where

r denotes the rank of A. This decomposition reveals the rank of

A and allows to solve Ax = y efficiently. PLUQ factorizations are

typically computed by some form of gaussian elimination: while it

is possible, choose a pivot and eliminate it.

When the input matrix A is sparse, then a sparse PLUQ should

be computed, producing factors L,U that are as sparse as possible.

A good pivot selection strategy is critical in maintaining sparsity

during the echelonization process. For example, in the following

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

PASCO ’17,
© 2017 ACM. 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

DOI: 10.1145/nnnnnnn.nnnnnnn

matrix, choosing the top-left entry as pivot and performing an

elimination step results in a fully dense submatrix, while choosing

the bottom-right entry leads to no fill-in at all.

*......
,

⊗ × × × ×

× ×

× ×

× ×

× ⊗

+//////
-

Let us write |M | the number of non-zero entries in the sparse matrix

M . Finding the sequence of pivots that minimizes the amount of

fill-in |L| + |U | − |A| is NP-hard [31], so sparse matrix factorization

algorithms use heuristics to select pivots. If too much fill-in accu-

mulates during the factorization, the computation may come to a

grinding halt, or simply fail if not enough memory is available.

1.1 Pivot Selection in Numerical Algorithms
Many sparse matrix factorization algorithms have been designed to

deal with square, invertible, floating-point matrices. WhenA is sym-

metric positive definite, a sparse Cholesky factorizationA = tLL can
be computed. In that case, the pivots are on the diagonal, and many

algorithms have been designed to select an a priori order on the

pivots, i.e. a permutation such that
tPAP is easier to factorize than

A. Approximate Minimum Degree [1] or Nested Dissection [14] are

such algorithms. They only exploit the structure of A (the locations

of non-zero entries) and disregard the numerical values.

When the input matrix is square and invertible but not symmet-

ric, a PLU factorization can be computed. In that case, pivots are

chosen to maintain both sparsity and numerical accuracy. As such,

the actual choice of pivots will ultimately depend on numerical

values that are not known in advance, and choosing an a priori
sequence of pivots is much more difficult. One option is to look

at the stucture of A + tA or AtA (which are symmetric), and use

symmetric pivot-selection algorithms to define an order in which

the columns of A will be processed. Then, during the numerical

factorization, choose inside each column the pivot that maximizes

accuracy (this is called “partial pivoting”).

Alternatively, pivots can be chosen “on-line” during the numeri-

cal factorization. Markowitz pivoting [24] chooses the next pivot

in a greedy way, to minimize fill-in caused by the next elimination

step (excluding those that would lead to numerical instability). Of

course, this requires the previous elimination steps to have already

been performed. This strategy has been implemented in LinBox for
exact sparse elimination.

When the coefficients of the input matrix live in an exact field

such as Q or Zp , numerical accuracy is no longer a problem. How-

ever, numerical cancellation becomes much more likely (and does

PASCO ’17, July 23–24, 2017, Kaiserslautern, Germany,
Charles Bouillaguet, Claire Delaplace, and Marie-Emilie Voge

occur if A is rectangular or rank-deffective). A priori pivot choice is
not made much easier because an entry selected beforehand to be

a pivot may vanish in a subsequent elimination step.

1.2 Structural Pivots
Entries that can be used as pivots can sometimes be identified based

solely on the pattern of non-zero entries. In the following matrix,

circled entries can be chosen as pivots regardless of the actual

values. We call these structural pivots.

Example 1.1.

c1 c2 c3 c4 c5 c6 c7 c8 c9

*.......
,

+///////
-

r1 ⊗ × × × ×

r2 ⊗ × × × ×

r3 ⊗ × × ×

r4 × × ⊗

r5 × × ⊗ ×

r6 × × × × × ×

The rows and column can be permuted as follows:

c1 c5 c7 c2 c3 c4 c6 c8 c9

*.......
,

+///////
-

r1 ⊗ × × × ×

r4 ⊗ × ×

r5 ⊗ × × ×

r2 ⊗ × × × ×

r3 ⊗ × × ×

r6 × × × × × ×

A set of k structural pivots has been identified if the rows and

columns of the matrix can be permuted such that the top-left k × k
submatrix is upper-triangular, as shown in this example.

We claim that being able to find many structural pivots is de-

sirable. In the extreme case, if all pivots can be found based on

the structure of the matrix, then the echelonization process can be

carried over without any arithmetic operation, just by permuting

the rows and columns — and without any fill-in.

If a large number of structural pivots can be identified, then the

coefficients below them can all be eliminated in one fell swoop

and the result (the Schur complement) can be easily computed in

parallel. If the number of pivots found is close to the rank, then

the Schur complement will have small rank, and will be easily

manageable.

Unfortunately, finding the maximum number of structural pivots

in a sparse matrix is NP-hard (cf. section 3.1).

1.3 Exact Linear Algebra Modulo p
A series of work considered the problem of computing the rank of

sparse matrices modulo a small prime p. Sparse PLUQ factoriza-

tions can be used to this end, and computing the rank is not much

easier than computing a PLUQ, so both problems are more-or-less

equivalent.

Iterative methods such as the Wiedemann algorithm [30] can

be used in exact linear algebra to perform the usual operations

on sparse matrices (computing the rank, solving linear systems,

etc.). They basically work by performing a series of matrix-vector

products and only need to store one or two vectors in addition to

the matrix. Their time complexity is essentially O (r |A|) and their

running is easy to predict. Iterative methods are sometimes slower

than sparse gaussian elimination, but they do not suffer from fill-in,

and thus “cannot fail”. As such, they are sometimes the only option

for matrices on which fill-in makes direct methods impractical.

A survey [10] on sparse rank computation mod p compared the

performance of the Wiedemann algorithm with that of a sparse

gaussian elimination algorithm, both implemented in the LinBox
library. It is proposed to parallelize the matrix-vector products in

the Wiedemann algorithm: a speed-up of ≈ 3 on 4 processors is

reported.

In [9], the authors were interested in large matrices originating

from algebraic K-theory (these are the matrices from the GL7d
folder of Dumas’s Sparse Integer Matrices Collection). Computing

the rank of these matrix, of size up to ≈ 2 · 106 with density 10
−5
,

reportedly took up to 35 days on 50 Itanium2 processors, using

a parallel implementation of the block-Wiedemann algorithm [7].

The authors estimated that the sequential computation would have

taken 321 days.

Faugère and Lachartre [12] designed an algorithm to compute

the row-echelon form of sparse matrices produced during Gröbner

basis computations. They observed that the leftmost entry of each

row can be a structural pivot if no other pivot has previously been

chosen on the same column. Because the Gröbner-basis matrices are

nearly triangular, this strategy often finds 99.9% of the maximum

number of pivots. This algorithm has been implemented in the

GBLA [4] software package.

In [3], the present authors proposed an implementation of a

left-looking elimination algorithm that often perform better than

its more well-known right-looking counterpart. Combined with

the Faugère-Lachartre structural pivot selection algorithm, this

enabled us to compute the rank of some sparse matrices up to

1000× faster than the Wiedemann algorithm. However, some of the

largest matrices (notably those from algebraic K-theory) remained

out of the reach of sparse elimination.

1.4 Our Contribution
We present new algorithms to find structural pivots in a sparse

matrix A, and use them to compute the ranks of some large sparse

matrices much faster than what could be done before.

A rectangular sparse matrix can be associated with a bipartite

graph: there is an edge i ↔ j when Ai j , 0. We exploit the old

observation that the edges of a uniquely restricted matching on this

graph are structural pivots, and vice-versa. A matching is said to be

uniquely restricted if the graph does not contain alternating cycles

with respect to the matching. More details are given in section 3.1.

In this graph-theoretic framework, we propose two heuristic

algorithms. The first one (in section 3.3) starts with a spanning tree

and build a matching restricted to this tree, by removing the vertices

that could potentially create an alternating cycle. It is almost linear,

and can, in some cases, find more pivots than the Faugère-Lachartre

heuristic.

The other algorithm we propose uses the following greedy strat-

egy: for each Ai j , 0, that may be a pivot, we add Ai j to the pivots

list, then we check if this induces an alternating cycle in the graph.

If so, then Ai j cannot be a structural pivot (see section 3.4). This

Parallel Sparse PLUQ Factorization modulo p
PASCO ’17, July 23–24, 2017, Kaiserslautern, Germany,

A →

A
00

A
01

A
10

A
11

Rows and columns permutation

→

A
00

A
01

S

Elimination step

Figure 1: Structural pivots and Schur complement computa-
tion

algorithm allow us to find up to 99.9% of the total number of pivots

in some cases, allowing us very fast rank computations.

A parallel implementation of this greedy algorithm is discussed

in section 4, and its parallel efficiency is reported in section 5.

All in all, these pivot selection algorithms enabled us to compute

the rank of several large sparse matrices from Dumas Sparse Integer

Matrices Collection (SIMC), especialy the largest matrices from

the GL7d folder, in a less than 5 minutes using 36 cores, where the

previous best algorithm took days.

These algorithms have been implemented in C using OpenMP
in a small library called SpaSM (for Sparse Solver Modulo p). Its
code is publicly available at :

https://github.com/cbouilla/spasm

We are currently working with the LinBox team to incorporate

these algorithms in the LinBox library.

2 SPARSE PLUQ FACTORIZATION
We used the following algorithm to compute PLUQ factorizations

(more details are in [3]):

(1) Find a set of structural pivots.

(2) Eliminate them; this yields a Schur complement S .
(3) Estimate the density of S :

(a) If S is sparse, compute its sparse PLUQ recursively.

(b) If S is dense, compute its dense PLUQ.

An illustration of the first two steps is given in Figure 1. The

main idea underlying this algorithm is essentially a greedy strategy

to minimize fill-in in L and U : rows in which a structural pivot has

been found in step 1 are copied as-is into U , with no fill-in at all. It

follows that finding the largest possible set of structural pivots is

usually beneficial.

Structural pivot selection strategies are discussed in section 3.

Other aspects of the algorithm are outlined below.

2.1 Schur Complement Computation
If k structural pivots are found in step 1, then we are given per-

mutations P and Q such that the k × k upper-left block of PAQ is

upper-triangular with non-zero diagonal, andA can be decomposed

as follow:

PAQ =

(
A00 A01

A10 A11

)
=

(
I

A10A
−1
00

I

) (
I

S

) (
A00 A01

I

)
where S denotes the Schur complement of PAQ with respect to A00

that remains to be factorized. It follows that:

S = A11 −A10A
−1
00
A01.

If k structural pivots have been found, then S has size (n − k) ×
(m−k). Denote by (ai0 ai1) the i-th row of (A10 A11), and consider
the following triangular system :

(x0 x1) ·
(
A00 A01

I

)
= (ai0 ai1). (1)

One can check that x1 = ai1 − ai0A−1
00
A01 and then x1 is the i-th

row of S .
A row of S can thus be computed by solving a sparse triangular

system with a sparse right-hand side. This can be done efficiently

using the Gilbert-Peierls algorithm [15]. The rows of S can be com-

puted independently and in parallel.

2.2 Dealing with the Schur Complement S
The density of S can be estimated with good accuracy by computing

a small random subset of its rows, and measuring its density.

If S is sparse, we obtain it by solving system (1) for all values of i ,
and we use our algorithm recursively to obtain a sparse PLUQ of S .

If S is dense, but small enough to fit in memory, then we compute

it entirely and obtain its dense PLUQ factorization, for instance

using off-the-shelf code such as FFLAS-FFPACK [29].

If S is both dense and very large, the situation is more compli-

cated. A favorable case arises when the number of structural pivots

found in step 1 is close to the rank of the matrix. In this case, the

rank of S is small. This makes it feasible to compute its dense PLUQ

factorization: The L andU obtained will be very “thin”, and we can

hope to store them entirely in memory. In order to compute the

rank of the original matrix, we actually implemented the following

technique to compute the rank of S :

(1) Guess an upper-bound r on the rank of S .
(2) Choose a random r × (n − k) matrixM .

(3) Compute S ′ = M × S (dense but small).

(4) Compute a dense PLUQ factorization of S ′.
(5) If S ′ has full row-rank, set r ← 2r and restart.

S ′ has the same rank as S with overwhelming probability (this

yields the rank of S , and thus of A). Solving x · S = y can be done

by solving x ′ · S ′ = y; x ′ ·M is then the wanted solution.

More advanced algorithms are possible. For instance, Saunders

and Youse [27] have proposed an algorithm, that can compute the

rank of large n×nmatrices whose rank r is very small, in
˜O (n2+r3)

time, and requiring only O
(
r2

)
storage, where the notation

˜O

means that logarithmic factors are ignored.

Lastly, when S has both large dimensions and large rank, then

the computation will most likely fail: computing the (dense) PLUQ

of S will not be feasible.

3 STRUCTURAL PIVOTS SEARCH
Sturctural pivots finding algorithms are combinatorial by nature,

since they ignore the values of non-zero entries in the matrix. As

such, the matrix is often associated with a sparse graph. When the

matrix is symmetric, then it can be seen as the adjacency matrix of

an undirected graph. When it is square but unsymmetric, it can be

seen as the adjacency matrix of a directed graph. Finally, when it is

not square, it can be seen as the occurence matrix of an undirected

bipartite graph: Ai j , 0 means that there is an edge between the

row node Ri and the column node Cj .

https://github.com/cbouilla/spasm

PASCO ’17, July 23–24, 2017, Kaiserslautern, Germany,
Charles Bouillaguet, Claire Delaplace, and Marie-Emilie Voge

3.1 Pivots and Matchings
A row (resp. a column) in which a pivot has been selected is a pivotal
row (resp. column). Because two pivots cannot be on the same row

or column, a set of pivots induces amatching on the bipartite graph.

Recall that a matching is a set of edges without common vertices.

This holds true for any set of pivots, be they chosen a priori or
during the factorization.

As such, the size of a maximal matching gives an upper-bound

on the rank of a sparse matrix. This bound is however not tight.

Consider the matrix: (
1 1 1

1 1 1

)
The two circled entries form a maximal matching between rows

and column, yet the matrix has rank 1. The elimination of the first

entry makes the second candidate pivot disappear.

In terms of matching, the definition of structural pivots implies

the absence of alternating cycles on the graph, with respect to

the matching defined by the pivots (a cycle is alternating if, for

every two consecutive edges, one is in the matching, cf. fig. 2).

A matching that does not induce alternating cycles is said to be

uniquely restricted [17], because it is the single matching between

these vertices in the graph.

Theorem 3.1. There exist row and column permutations P and Q
such that the k × k principal submatrix of PAQ is upper-triangular if
and only if there exist a uniquely restricted matching of size k in the
bipartite graph associated to A.

This theorem is not original (it is already mentionned in [17, 19]).

We will prove it again for completeness. In alternating paths, every

other edge belongs to the matching. Therefore, an alternating path

is fully specified by its extremities and its non-matching edges. This

“path compression” is useful both in theory and in practice.

Given a matchingM =
{
(r1,c1), . . . , (rk ,ck)

}
over a bipartite

graphA, we form the directed graphGM as follows: its vertices are

{1, . . . ,k } and i
G
−−→ j if and only if ri

A
←→ c j . The adjacency matrix of

GM is formed by extracting rows r1, . . . ,rk and columns c1, . . . ,ck
of the occurence matrix of A.

The point is that there is a one-to-one correspondance between

alternating paths ofAw.r.tM starting by a row vertex and in which

all vertices are matched on the one hand, and (directed) paths of

GM on the other hand.

• Let u1 → · · · → uk be a directed path in GM . Then ru1 ↔
cu2 ↔ ru2 ↔ cu3 ↔ · · · ↔ cuk is an alternating path in A:
the edges rui ↔ cui belong to the matching, and the edges

rui ↔ cui+1 exist in A by definition of GM .

• Let R1 ↔ C2 ↔ R2 ↔ . . . ←→ Cℓ be an alternating path in

A. We assume, without loss of generality, that {Ri ,Ci } ∈ M
for all i . This means that there is a sequence of indices (ui)
such that the path can be written ru0 ↔ cu1 ↔ ru1 ↔
· · · ↔ cuℓ . We ignore the edges belonging to the matching:

the edges rui ↔ cui+1 connect two matched vertices in

A, but they do not belong to the matching. This implies

that there are edges ui
G
−−→ ui+1 inGM , forming a directed

path.

This correspondance makes it easy to prove theorem 3.1.

(
⊗ ×

× ⊗ ×

) (
⊗ ×

× × ⊗

)

1

2

1

2

3

R C

Alternating cycle

1

2

1

2

3

R C

Uniquely Restricted Matching

Figure 2: Matchings in bipartite graphs

Proof of theorem 3.1. If PAQ has an upper-triangular k × k
principal submatrix, then we form the matching

M = {{P (i),Q (i)} | 1 ≤ i ≤ k } .

The associated directed graphGM is acyclic: its adjacency matrix

is the k ×k upper-triangular principal submatrix of PAQ . There are

no alternating in A: by the correspondance above, this would imply

a cycle in GM .

Conversely, let M =
{
(r1,c1), . . . , (rk ,ck)

}
be a uniquely re-

stricted matching on A. By the correspondance above, this implies

that the associated directed graph GM is acyclic. LetM denote its

adjacency matrix (it is a submatrix of A, as argued above). GM can

be topologically sorted: with a simple DFS, we find a permutation

P of its vertices such that PMtP is upper-triangular. This is enough

for our purpose: we build row and column permutations P ′ and Q ′

such that the first k rows (resp. columns) are rP (1) , . . . ,rP (k) (resp.
cP (1) , . . . ,cP (k)). It follows that the principal k × k submatrix of

P ′AtQ ′ is PMtP , which is upper-triangular. □

Computational Aspects. To our knowledge the interest in max-

imum matching without alternating cycle first appears in [6] in

connection with the Jump-number problem for partially ordered set.

The size of such a matching is shown to equal the number of steps
in a bipartite DAG and is directly connected to the number of arcs

to add to create an hamiltonian path but no circuits. Later in [26]

the maximum alternating cycle-free matching problem is shown to

be polynomial for —bipartite or not— distance hereditary graphs

but NP-hard for chordal bipartite graphs and strongly chordal split

graphs of diameter 2.

The problem was then introduced in [17] under the name Maxi-

mum Uniquely Restricted Matching problem, following the work

of [19]. Recognition algorithms and NP-completness results for

general and bipartite and some other special classes of graphs were

given. In [18] this work is pursued for sub-classes of interval graphs

with polynomial time algorithms. Recently a polynomial time al-

gorithm to solve the problem in interval graphs was presented in

[13] as well as linear time algorithms for proper interval graphs

and bipartite permutation graphs.

Parallel Sparse PLUQ Factorization modulo p
PASCO ’17, July 23–24, 2017, Kaiserslautern, Germany,

Part of the work related to Uniquely Restricted Matchings con-

cerns structural properties of graphs or characterization of classes

of graphs having some special properties. A characterization of

unicycle graphs in which a maximum matching and a maximum

uniquely restricted matching have the same size is given in [22]. In

[20, 21, 23] links between UR Matching and Local Maximum Stable

Set greedoids are investigated while [16] explores the properties

of generalized subgraph-restricted matchings to which belongs UR

Matchings. A characterization of graphs in which every maximum

matching is uniquely restricted is proposed in [8].

The approximability properties of the URM problem in bipartite

graphs are studied in [25]. This problem is APX-complete in bipar-

tite graphs of degree at most 3, but is not approximable within a

factor of O (n
1

3
−ε) ∀ε > 0 unless NP = ZPP. The 2-approximation

given for 3-regular bipartite graphs is improved in [2] with a
9

5
-

approximation algorithm for subcubic bipartite graphs.

These approximations cannot be used directly in our context,

where the bipartite graphs induced by sparse matrices need not

have degree at most three.

3.2 The Faugère-Lachartre Algorithm
Wenow discuss several heuristic algorithms to find structural pivots.

The Faugère-Lachartre (FL) algorithm selects the first non-zero

coefficient of each row, if it is not already under another pivot (in

the example given by equation 1.1, the first three pivots of the

matrix are of this kind). This can be done in O (|A|).
This simple procedure was applied in the particular case of ma-

trices originating from Gröbner basis computation. These matrices

are nearly triangular and it follows that nearly 99% of the pivots

can be identified a priori using this method.

The matrix can be permuted to make the principal submatrix

triangular by pushing pivotal rows to the top, pivotal columns to

the left, and finally sorting pivotal rows according to the column

index of their leftmost non-zero entry.

The FL strategy is not restricted to Gröbner basis matrices. We

used it to compute the rank of some large sparse matrices [3]. It

often finds a large number of structural pivots when the matrix is

mostly triangular.

In certain cases, it can be interesting to permute the columns

of the matrix first, to increase the number of structural pivots

found by the FL algorithm. For instance, in the cases of the GL7d
matrices from Dumas’s collection, we figured out that flipping them

horizontally (permuting the first column with the last column, the

second first with the second last, and so) allow us to find up to 50%

more a priori pivots with the FL algorithm. This is for instance the

case on the GL7d19 matrix shown fig. 3.

3.3 A quasi-linear Heuristic Algorithm
This algorithm is based on the works of [5] and [28] which are

related to connectivity and ear decomposition of graphs. They

use depth-first search respectively to compute st-orderings in 2-

connected graphs and test 2- and 2-edge-connectivity. Our algo-

rithm works as follows:

(1) Compute a spanning tree T of the input graph.

(2) Let A′ be the subgraph formed by the edges not in T .

(3) Let I be an Independent Set of A′.

Figure 3: Pattern of the GL7d19 matrix. The Faugère-
Lachartre heuristic finds much more pivots after a horizon-
tal flip.

(4) Let T ′ be the subgraph of T induced by I.

(5) Compute a maximum matchingM on T ′.

This procedure yields a UR matching of A. Indeed, consider a
cycle in A. It cannot be contained inside T , because T is a tree.

Therefore, there is an edge u ↔ v of the cycle in A′. Because I
is an independent set of A′, it cannot contain both u and v . This
implies that u andv cannot both be matched inM. This shows that

the cycle cannot be alternating (all its vertices would have to be

matched).

Computing the largest possible Independent Set is NP-hard, and

therefore we used the following greedy algorithm: start with an

empty I; If there remain more row vertices than column vertices,

add the row vertex of smallest degree to I and remove it from the

graph. Otherwise, do the same with the column vertex of smallest

degree. This can be implemented in time O (n log |A|) using two

binary heaps to store remaining vertices of each kind.

There are cases where this strategy outperforms the Faugère-

Lachartre heuristic (see fig. 4). However, in most cases it yields

disappointingly bad results. We believe that it might only work

well on very sparse matrices where T contains a non-negligible

fraction of all non-zero entries. Indeed, note that |T | = n +m − 1,
while |A′ | = |A| − n −m + 1.

3.4 A Simple Greedy Algorithm
We had more success with a simple algorithm that starts with an

empty URmatching and grows it in a greedyway: examine each can-

didate edge ri ↔ c j , where ri and c j are unmatched rows/columns;

check whether adding it to the matching would create an alternat-

ing cycle; if not, add it to the matching.

PASCO ’17, July 23–24, 2017, Kaiserslautern, Germany,
Charles Bouillaguet, Claire Delaplace, and Marie-Emilie Voge

Original matrix

rank 168310

Faugère-Lachartre (section 3.2)

65536 pivots

Tree-based (section 3.3)

73492 pivots

Greedy (section 3.4)

160740 pivots

Figure 4: The Homology/shar_te.b3matrix, and the structural pivots found by each algorithm.

Adding (ri ,c j) to the matching creates an alternating cycle if and

only if there is already an alternating path ri ↔ C ↔ R ↔ · · · ↔ c j
in A w.r.t.M. Because the the path is alternating, then R is the row

matched toC . This makes it possible to check all candidate non-zero

entries of the i-th row of A as follows :

(G1) [Initialization] For each non-zeroAi j , if column j is matched,

then enqueue j, else mark j as “candidate”.
(G2) [BFS] While the queue is not empty, remove its first ele-

ment k . If column k is not matched, go back to step (G2).

Otherwise, let u be the row matched to k . For each non-

zero Auv , if v is not marked as “visited”, then mark v as

“visited” and add v to the queue.

(G3) [Detection] For each non-zero Ai j , if j is still marked as

“candidate”, then add it to the matching and go to step (G4).

(G4) [Cleanup] For each j that has been enqueued, and each

non-zero Ai j , remove the mark on j.

The worst case complexity of the method is O (n |A|), which is

the same complexity as the Wiedemann algorithm. However, we

observed that, in practice, this is much faster. Our sequential im-

plementation terminates in a few hours on our largest benchmark,

versus many expected months for Wiedemann.

Most of the time is spent in the BFS step. We used the following

early-abort strategy to speed it up: in step 1, we count the number

of candidates. During the BFS, each time we mark a candidate as

“visited”, we decrement this counter. If it reaches zero, we jump to

step 4. On our collection of benchmarks, this gives a noticeable

improvement.

Note that this procedure can be started with a non-empty match-

ing. In fact, one can first find a set of structural pivots using another

technique (e.g. the F.-L. algorithm), and then enlarge the matching

using this greedy algorithm. As a matter of fact, we figured out that

the following strategy yields good results in many cases:

(1) Find the F.-L. pivots, and add them to the matching.

(2) For each non-pivotal column, if the upmost non-zero coef-

ficient is on a non-pivotal row, add it to the matching.

(3) Complete the matching using the greedy procedure above

Case (2) is a particular case of the general algorithm given above.

In the matrix from example 1.1, the first three pivots are found

performing step 1 of the previous strategy. The fourth is selected

r1 r3 r6

c1 c3 c8

Figure 5: Example of a "bad" candidate, alternating cycle ap-
pears

performing step 2. The last one is selected performing step 3. We

represent the candidates on the last row by black bullets. As it is

shown below, none of them can be selected.

c1 c2 c3 c4 c5 c6 c7 c8 c9

*.......
,

+///////
-

r1 ⊗ × × × ×

r2 ⊗ × × × ×

r3 ⊗ × × ×

r4 × × ⊗

r5 × × ⊗ ×

r6 × × × • • •

c1 c2 c3 c4 c5 c6 c7 c8 c9

*.......
,

+///////
-

r1 ⊗ × × × ×

r2 ⊗ × × × ×

r3 ⊗ × × ×

r4 × × ⊗

r5 × × ⊗ ×

r6 × × × • • •

In all the cases, an alternative cycle would appear. For instance,

figure 5, gives an illustration of the alternating cycle obtained choos-

ing candidate (r6,c8).
This greedy algorithm is capable of finding 99.9% of all the pivots

in some matrices, when the other strategies we tried were not as

good.

Parallel Sparse PLUQ Factorization modulo p
PASCO ’17, July 23–24, 2017, Kaiserslautern, Germany,

4 PARALLEL IMPLEMENTATION
Because structural pivot search dominates the running time of our

rank computations, we chose to parallelize the greedy algorithm of

section 3.4. This raises interesting problems.

Data Structures. We store sparse matrices using the Compressed

Sparse Row (CSR) format. This means that given i , we can efficiently

iterate over the set of non-zero Ai j . This is all that is needed to

implement our greedy algorithm.

Rows and column indices are stored using int variables. Storing
the matching requires an array qinv ofm integer: qinv[j] gives
the row matched to column j, or −1 if column j is not matched.

Marking is done with an array of m bytes (only 2 bits would be

necessary, because only 3marks are used), with mark[j] containing
the state of column j.

The queue is another array queue of m integers, along with

two integer first (incremented when dequeuing) and last (incre-

mented when enqueuing), both initially zero. The queue is empty

when first = last. Re-walking the queue is then very easy: just

read queue from 0 to last.

Parallelization Strategy. The basic approach is to process k rows

on k threads simultaneously. The description of the matching qinv
is shared between threads, as well as npiv, an integer counting the

size of the matching.

The problem is that every time a thread adds an edge to the

matching, new alternating paths are created in the graphs. Depend-

ing on the timing of operations, these paths may or may not be

explored by concurrent BFS searches. More precisely, what can go

wrong is that a thread T1 finds that column k is not matched in

the BFS step, and ignores the matched row. Immediately after, an-

other threadT2 matches column k to some row. Unaware of that,T1
chooses an entry that creates an alternating cycle. This is illustrated

by the example bellow.

*...
,

+///
-

⊗ ×

⊗ ×

T1 → × ⊠ × ×

T2 → × × ⊗ ×

Simple Transactional Approach. To avoid this problem, and to

avoid expensive synchronizations between threads, we used an

optimistic approach based on transactions, as found in concurrent

databases.

In its simplest form, it works by processing each row, using the

algorithm of section 3.4, in a transaction. Either the matching is

not modified during the lifespan of the transaction, and it succeeds.

If the matching has been modified, then the transaction rollbacks

and has to be restarted. More often than not, examining a row does

not reveal any new pivot, so that rollbacks are relatively rare. The

redundant work that may occur is more than compensated by the

nearly complete elimination of synchronizations. The procedure

executed by each thread to process a row i is:

(1) [Start transaction] Copy npiv to a local variable npiv’.
(2) [Sequential process] Process row i . If no pivot has been

found, stop.

(3) [Commit] Let Ai j be a potential pivot. Enter a critical sec-
tion. If npiv > npiv’, set bad to True. Otherwise, incre-
ment npiv, and set qinv[j] to i . Exit the critical section.
If not bad, stop.

(4) [Rollback] Restart.

The goal of this strategy is to minimize time spent in the critical

section. In practice, we observed that time spent waiting to enter

the critical section is negligible.

Refined Transactional Approach. It is possible to eliminate the

potential redundant work created by rollbacks. To this end, we add

another shared array ofm integers, journal, such that journal[k]
is the column of the k-th edge added to the matching.

When thread tries to commit a new pivot and fails, then it has

“missed” pivots on columns:

journal[npiv’], . . . , journal[npiv-1].

The corresponding rows are given by qinv. For each such column j ,
several situations may occur:

• If j was not marked during the BFS, it can safely be ignored.

• If a pivot has been found on column j, then step (G3) has

to be reattempted.

• If column j wasmarked “visited” then jmust be re-enqueued

and step (G2) must be restarted.

This eliminates almost all the extra work caused by rollbacks,

while keeping the advantages.

Lock-Free Implemenation. Pushing things to the extreme, it is pos-

sible to implement both transactional strategies without locks nor

critical sections, if a compare-and-swap (CAS) hardware instruction

is available (the CMPXCHG instruction is available on x86 proces-

sors since the 1990’s). The C11 standard specifies that this function-
nality is offered by the atomic_compare_exchange_strong func-
tion of <stdatomic.h>. The CAS(A,B,C) instruction performs the

following operation atomically: ifA = B, then setA← C and return

True, else return False.
If the journal is a linked list, then it can be updated atomically

using a CAS. Each cell contain the column index of a pivot and a

pointer to the next cell. journal is then a pointer to the first cell (or

NULL initially). The simple strategy is then implemented as follows:

(1) [Start] Copy journal to a local variable journal’.
(2) [Sequential process] Process row i . If no pivot has been

found, stop.

(3) [Commit] Let Ai j be a potential pivot. Allocate a new

linked-list entry new_journal ← (j,journal’). Set OK
to CAS(journal, journal’, new_journal). If OK, set
qinv[j] to i and stop.

(4) [Rollback] Walk the pivot linked list from journal to

journal’; for each pivot (i, j), set qinv[j] ← i. Free
new_journal and go back to (1).

When a transaction rollbacks, the “missed” pivots are those found

by walking the journal list until the next link points to journal’.
This allows to implement the “refined” strategy easily. It is necessary

to perform the (potentially redundant) update of qinv in step 4:

another thread could have been interrupted in step 3 after updating

journal but before setting qinv[j].

PASCO ’17, July 23–24, 2017, Kaiserslautern, Germany,
Charles Bouillaguet, Claire Delaplace, and Marie-Emilie Voge

GL7/GL7dk |A| n m rank

15 6,080,381 460,261 171,375 132,043

16 14,488,881 955,128 460,261 328,218

17 25,978,098 1,548,650 955,128 626,910

18 35,590,540 1,955,309 1,548,650 921,740

19 37,322,725 1,911,130 1,955,309 1,033,568

20 29,893,084 1,437,547 1,911,130 877,562

21 18,174,775 822,922 1,437,547 559,985

22 8,251,000 349,443 822,922 262,937

Table 1: Benchmark matrices

We did not implement this lock-free strategy, because the critical

section did not appear to be a bottleneck. However, we have shown

that it is possible to get rid of it.

5 EXPERIMENTS AND RESULTS
The algorithms described in this paper have been implemented in

C (using OpenMP) and assembled in a small library called SpaSM.

We focused on rank computation, because the output is a single

int; it nevertheless requires a complete PLUQ factorization. Our

code computing the rank modulo a word-size prime p in parallel

can be reduced to a single C file of 1200 lines of code (including

IO).

We used the matrices from algebraicK-theory [9] as benchmarks

(GL7/GL7dk , where k ranges between 10 and 26). They are amongst

the largest in Dumas’s sparse matrix collection [11], and comput-

ing their rank is challenging. It was only feasible using iterative

methods to this point — and it required many days. Table 1 gives

standard information about them.

According to [9], for the considered matrices, the sequential run-

ning time of the Block-Wiedemann algorithm is estimated between

67 hours (GL7d15) and 322 days (GL7d19, the hardest case). A par-

allel implementation of the Block-Wiedemann algorithm on a SGI

Altix 370 with 64 Itanium2 processors allowed the authors of [9] to

compute the rank of GL7d15 in 2.25 hours using 30 processors and

to compute the rank of GL7d19 in 35 days using 50 processors in

parallel.

We tried to check how these results held the test of time by run-

ning the sequential computation using LinBox (sequential Wiede-

mann algorithm) on a single core of machine A. The rank of GL7d15
was found in 3 hours. We could not compute the rank of GL7d19:
unfortunately, the cluster manager killed our job after only 16 days.

In strong contrast to these numbers, our code computed the

rank of GL7d19 in 10 seconds and the rank of GL7d19 in 4 minutes

(wall-clock time) using 36 cores (machine C, see below).

We benchmarked our implementation on three parallel machines
1

with different characteristics, summarized in table 2. They all con-

tain Intel Xeon E5-xxxx CPUs with varying number of cores and

amount of L3 cache. We focused performance measurement on

the structural pivot selection phase, because its running time is

1
A belongs to the university of Lille-1’s cluster; B was kindly made available to us by

the ANR HPAC project and is located in the university Grenoble-Alpes; C is used for

teaching HPC at the Paris-6 university

Name CPU Type # CPU cores/CPU L3 Cache/CPU

A Xeon E5-2670 v3 2× 12 30MB

B Xeon E5-4620 4× 8 16MB

C Xeon E5-2695 v4 2× 18 45MB

Table 2: Benchmark Machines Specifications

4 8 12 16 20 24 28 32 36
Cores

4

8

12

16

20

24

S
p
e
e
d
u
p

Optimal
A
B
C

Figure 6: Structural pivot search, GL7d19

dominating in practice, and because the way we compute the rank

of the dense schur complement is rather naive.

Table 3 shows the number of structural pivot found using the

FL heuristic and the greedy algorithm of section 3.4, as well as the

proportion of the rank that this represent (i.e. 100 × #pivots/rank).
In order to maximize the number of pivots found by the FL

heuristic, we first flipped the matrices horizontally (we swap the

first and the last column, the second first and the second last,...).

For the last matrices (GL7dk , with k ≥= 20), we also transposed

them as we figured out that this yields better results.

The table 4 gives the performances of the greedy algorithm. For

each machine A, B, and C, the first column gives the running time

(in seconds) of the algorithm using only one core, the second col-

umn gives the running time of the algorithm using all available

cores. Finally the last column gives the speedup obtain using par-

allelization (running time using one core / running time using all

cores).

The most interesting case is the largest matrix, GL7d19, whose
rank computation is the toughest. It is the matrix where our parallel

implementation scales worst (fig. 6). With the smaller GL7d16, on
the other hand, we observe near-perfect scalability (fig. 7).

Figures 6 and 7 show that, given one matrix, our parallel im-

plementation does not scale the same way on every benchmark

machine. In fact, we noticed that our implementation does not scale

very well on B, reaching a parallel efficiency (speedup/ #cores) of

63.01% in average using 32 cores. In fact, for the worst case (GL7d19)
the parallel efficiency is 41.91%. On the other hand, the implemen-

tation scales better on C, where we reach a parallel efficiency of

Parallel Sparse PLUQ Factorization modulo p
PASCO ’17, July 23–24, 2017, Kaiserslautern, Germany,

GL7dk # FL pivots % of the rank # greedy pivots % of the rank

15 128,452 97.28 132,002 99.97

16 317,348 96.69 328,079 99.96

17 602,436 96.10 626,555 99.94

18 879,241 95.39 920,958 99.92

19 980,174 94.83 1,032,419 99.89

20 817,944 93.21 877,317 99.97

21 522,534 93.31 559,784 99.96

22 246250 93.65 262817 99.95

Table 3: Number of structural pivots found using the FL heuristic and using the new greedy algorithm

Machine A Machine B Machine C

GL7dk 1 core (s) 24 cores (s) speedup 1 core (s) 32 cores (s) speedup 1 core (s) 36 cores (s) speedup

15 18 1 15.2 26 1 26.0 22 1 26.9

16 148 7 20.0 301 13 23.9 180 5 33.4

17 687 36 18.9 1502 105 14.4 897 29 30.9

18 2206 123 17.9 5649 388 14.6 2594 94 27.7

19 3774 222 17.0 9284 692 13.4 4212 197 21.4

20 1272 72 17.8 3657 197 18.5 1483 56 26.3

21 359 18 19.5 886 36 24.5 446 14 31.7

22 49 3 18.8 68 3 26.2 57 2 30.1

Table 4: Parallel efficiency of the greedy algorithm

Figure 7: Structural pivot search, GL7d16

79.28% in average using 36 cores, and which can be up to 92.81% in

the best case (GL7d16).
This phenomenon may be due to the size of the L3 Cache. The

qinv array describing the matching is accessed frequently, in an

unpredictable manner, by all the threads. Each thread also access

frequently and unpredictably its own mark array (the queue of

each thread, on the other hand, is accessed with good spatial and

temporal locality).

We thus expect the L3 cache of each CPU to contain a copy of

qinv plus one mark per thread. When k threads run on each CPU,

this amount of data requires (4 + k)m bytes.

This suggests that a strong performance degradation is likely to

occur when this quantity goes beyond the size of the L3 cache. On

machine B, for the GL7d19 matrix, this should happens when > 4

threads run on each CPU. And indeed, we observe a severe drop in

parallel efficiency when using more than 16 threads on the 4 CPUs.

This might also explain why transposing the last matrices helps:

they have much more columns than rows.

Lastly, this bottleneck could potentially be alleviated a little by

using more efficient marks, using only 2 bits per column instead

of 8. However, doing so would require more bit-twiddling, and its

effect on the overall performance has yet to be evaluated.

6 CONCLUSION AND FUTUREWORK
We have designed and implemented an efficient algorithm for struc-

tural pivot selection in sparse matrices. This is turn allowed us to

compute the rank of several large sparse matrices with a direct

PLUQ factorization, in a tiny fraction of the time that was needed

before using iterative methods. We have also demonstrated the

parallel scalability of our implementation.

In conclusion, we feel compelled to highlight the limitations of

our algorithms. They will not always work efficiently, and they will

fail badly on matrices where fill-in is unavoidable.

Our experience suggests that a large number of structural pivot

can often be found in matrices that are somewhat triangular, such

as the GL7dk matrices. In this case, the algorithm we present are

PASCO ’17, July 23–24, 2017, Kaiserslautern, Germany,
Charles Bouillaguet, Claire Delaplace, and Marie-Emilie Voge

more likely to be able to exploit this structure to allow much faster

operations than the “slow-but-sure” iterative methods.

Acknowledgment. The first two authors are funded by the ANR

BRUTUS project.

REFERENCES
[1] Patrick R. Amestoy, Timothy A. Davis, and Iain S. Duff. 1996. An Approximate

Minimum Degree Ordering Algorithm. SIAM J. Matrix Analysis Applications 17,
4 (1996), 886–905. DOI:https://doi.org/10.1137/S0895479894278952

[2] Julien Baste, Dieter Rautenbach, and Ignasi Sau. 2016. Uniquely restricted match-

ings and edge colorings. CoRR abs/1611.06815 (2016).

[3] Charles Bouillaguet and Claire Delaplace. 2016. Sparse Gaussian Elimination

modulo p: an Update. In International Workshop on Computer Algebra in Scientific
Computing. Springer, 101–116.

[4] Brice Boyer, Christian Eder, Jean-Charles Faugère, Sylvian Lachartre, and

Fayssal Martani. 2016. GBLA - Gröbner Basis Linear Algebra Package. CoRR
abs/1602.06097 (2016). http://arxiv.org/abs/1602.06097

[5] Ulrik Brandes. 2002. Eager st-Ordering. In Proceedings of the 10th Annual European
Symposium on Algorithms (ESA ’02). Springer-Verlag, London, UK, UK, 247–256.
http://dl.acm.org/citation.cfm?id=647912.740674

[6] G. Chaty and M. Chein. 1979. Ordered matchings and matchings without alter-

nating cycles in bipartite graphs. Utilitas Mathematica 16 (January 1979), 183 –

187.

[7] Don Coppersmith. 1994. Solving homogeneous linear equations over F2 via

block Wiedemann algorithm. Math. Comp. 62, 205 (1994), 333–350.
[8] L. Draque Penso, D. Rautenbach, and U. dos Santos Souza. 2015. Graphs in which

some and every maximum matching is uniquely restricted. ArXiv e-prints (April
2015). arXiv:math.CO/1504.02250

[9] Jean-Guillaume Dumas, Philippe Elbaz-Vincent, Pascal Giorgi, and Anna Ur-

banska. 2007. Parallel computation of the rank of large sparse matrices from

algebraic K-theory. In Parallel Symbolic Computation, PASCO 2007, International
Workshop, 27-28 July 2007, University of Western Ontario, London, Ontario, Canada.
43–52.

[10] Jean-Guillaume Dumas and Gilles Villard. 2002. Computing the rank of sparse

matrices over finite fields. In CASC’2002, Proceedings of the fifth International
Workshop on Computer Algebra in Scientific Computing, Yalta, Ukraine, Victor G.
Ganzha, Ernst W. Mayr, and Evgenii V. Vorozhtsov (Eds.). Technische Universität

München, Germany, 47–62. http://ljk.imag.fr/membres/Jean-Guillaume.Dumas/

Publications/sparseeliminationCASC2002.pdf

[11] J.-G. Dumas. Sparse Integer Matrices Collection. (????). http://hpac.imag.fr.

[12] J.-C. Faugère and Sylvain Lachartre. 2010. Parallel Gaussian elimination for

Gröbner bases computations in finite fields. In PASCO, Marc Moreno Maza and

Jean-Louis Roch (Eds.). ACM, 89–97.

[13] Mathew C. Francis, Dalu Jacob, and Satyabrata Jana. 2016. Uniquely Restricted

Matchings in Interval Graphs. CoRR abs/1604.07016 (2016).

[14] Alan George. 1973. Nested Dissection of a Regular Finite Element Mesh. 10, 2

(April 1973), 345–363.

[15] John R. Gilbert and Tim Peierls. 1988. Sparse Partial Pivoting in Time Proportional

to Arithmetic Operations. SIAM J. Sci. Statist. Comput. 9, 5 (1988), 862–874. DOI:
https://doi.org/10.1137/0909058 arXiv:http://dx.doi.org/10.1137/0909058

[16] Wayne Goddard, SandraM. Hedetniemi, Stephen T. Hedetniemi, and Renu Laskar.

2005. Generalized subgraph-restricted matchings in graphs. Discrete Mathematics
293, 1–3 (2005), 129 – 138. DOI:https://doi.org/10.1016/j.disc.2004.08.027 19th

British Combinatorial Conference19th British Combinatorial Conference.

[17] M. C. Golumbic, T. Hirst, and M. Lewenstein. 2001. Uniquely Restricted

Matchings. Algorithmica 31, 2 (2001), 139–154. DOI:https://doi.org/10.1007/
s00453-001-0004-z

[18] Swapnil Gupta and C. Pandu Rangan. 2016. Computing Maximum Uniquely

Restricted Matchings in Restricted Interval Graphs. International Journal of
Computer, Electrical, Automation, Control and Information Engineering 10, 6 (2016),
950 – 959. http://waset.org/Publications?p=114

[19] Daniel Hershkowitz and Hans Schneider. 1993. Ranks of zero patterns and sign

patterns. Linear and Multilinear Algebra 34, 1 (1993), 3–19. DOI:https://doi.org/
10.1080/03081089308818204 arXiv:http://dx.doi.org/10.1080/03081089308818204

[20] V.E. Levit and Eugen Mandrescu. 2007. Triangle-free graphs with uniquely

restricted maximum matchings and their corresponding greedoids. Discrete
Applied Mathematics 155, 18 (2007), 2414 – 2425. DOI:https://doi.org/10.1016/j.
dam.2007.05.039

[21] Vadim E. Levit and Eugen Mandrescu. 2003. Local maximum stable sets in bipar-

tite graphs with uniquely restricted maximum matchings. Discrete Applied Math-
ematics 132, 1–3 (2003), 163 – 174. DOI:https://doi.org/10.1016/S0166-218X(03)
00398-6 Stability in Graphs and Related Topics.

[22] Vadim E. Levit and Eugen Mandrescu. 2005. Unicycle graphs and uniquely

restricted maximum matchings. Electronic Notes in Discrete Mathematics 22
(2005), 261 – 265. DOI:https://doi.org/10.1016/j.endm.2005.06.055

[23] VADIM E. LEVIT and EUGEN MANDRESCU. 2011. VERY WELL-COVERED

GRAPHS OF GIRTH AT LEAST FOUR AND LOCAL MAXIMUM STA-

BLE SET GREEDOIDS. Discrete Mathematics, Algorithms and Applica-
tions 03, 02 (2011), 245–252. DOI:https://doi.org/10.1142/S1793830911001115
arXiv:http://www.worldscientific.com/doi/pdf/10.1142/S1793830911001115

[24] Harry M. Markowitz. 1957. The Elimination Form of the Inverse and Its Appli-

cation to Linear Programming. Manage. Sci. 3, 3 (April 1957), 255–269. DOI:
https://doi.org/10.1287/mnsc.3.3.255

[25] Sounaka Mishra. 2011. On the Maximum Uniquely Restricted Matching for

Bipartite Graphs. Electronic Notes in Discrete Mathematics 37 (2011), 345 – 350.

DOI:https://doi.org/10.1016/j.endm.2011.05.059

[26] Haiko Müller. 1990. Alternating cycle-free matchings. Order 7, 1 (1990), 11–21.
DOI:https://doi.org/10.1007/BF00383169

[27] B. David Saunders and Bryan S. Youse. 2009. Large Matrix, Small Rank. In

Proceedings of the 2009 International Symposium on Symbolic and Algebraic
Computation (ISSAC ’09). ACM, New York, NY, USA, 317–324. DOI:https:
//doi.org/10.1145/1576702.1576746

[28] JensM. Schmidt. 2013. A simple test on 2-vertex- and 2-edge-connectivity. Inform.
Process. Lett. 113, 7 (2013), 241 – 244. DOI:https://doi.org/10.1016/j.ipl.2013.01.016

[29] The FFLAS-FFPACK group. 2014. FFLAS-FFPACK: Finite Field Linear Algebra
Subroutines / Package (v2.0.0 ed.). http://linalg.org/projects/fflas-ffpack.

[30] Douglas H. Wiedemann. 1986. Solving sparse linear equations over finite fields.

IEEE Trans. Information Theory 32, 1 (1986), 54–62. DOI:https://doi.org/10.1109/
TIT.1986.1057137

[31] Mihalis Yannakakis. 1981. Computing the Minimum Fill-In is NP-Complete.

SIAM Journal on Algebraic Discrete Methods 2, 1 (1981), 77–79. DOI:https://doi.
org/10.1137/0602010 arXiv:http://dx.doi.org/10.1137/0602010

https://doi.org/10.1137/S0895479894278952
http://arxiv.org/abs/1602.06097
http://dl.acm.org/citation.cfm?id=647912.740674
http://arxiv.org/abs/math.CO/1504.02250
http://ljk.imag.fr/membres/Jean-Guillaume.Dumas/Publications/sparseeliminationCASC2002.pdf
http://ljk.imag.fr/membres/Jean-Guillaume.Dumas/Publications/sparseeliminationCASC2002.pdf
http://hpac.imag.fr
https://doi.org/10.1137/0909058
http://arxiv.org/abs/http://dx.doi.org/10.1137/0909058
https://doi.org/10.1016/j.disc.2004.08.027
https://doi.org/10.1007/s00453-001-0004-z
https://doi.org/10.1007/s00453-001-0004-z
http://waset.org/Publications?p=114
https://doi.org/10.1080/03081089308818204
https://doi.org/10.1080/03081089308818204
http://arxiv.org/abs/http://dx.doi.org/10.1080/03081089308818204
https://doi.org/10.1016/j.dam.2007.05.039
https://doi.org/10.1016/j.dam.2007.05.039
https://doi.org/10.1016/S0166-218X(03)00398-6
https://doi.org/10.1016/S0166-218X(03)00398-6
https://doi.org/10.1016/j.endm.2005.06.055
https://doi.org/10.1142/S1793830911001115
http://arxiv.org/abs/http://www.worldscientific.com/doi/pdf/10.1142/S1793830911001115
https://doi.org/10.1287/mnsc.3.3.255
https://doi.org/10.1016/j.endm.2011.05.059
https://doi.org/10.1007/BF00383169
https://doi.org/10.1145/1576702.1576746
https://doi.org/10.1145/1576702.1576746
https://doi.org/10.1016/j.ipl.2013.01.016
http://linalg.org/projects/fflas-ffpack
https://doi.org/10.1109/TIT.1986.1057137
https://doi.org/10.1109/TIT.1986.1057137
https://doi.org/10.1137/0602010
https://doi.org/10.1137/0602010
http://arxiv.org/abs/http://dx.doi.org/10.1137/0602010

	Abstract
	1 Introduction
	1.1 Pivot Selection in Numerical Algorithms
	1.2 Structural Pivots
	1.3 Exact Linear Algebra Modulo p
	1.4 Our Contribution

	2 Sparse PLUQ Factorization
	2.1 Schur Complement Computation
	2.2 Dealing with the Schur Complement S

	3 Structural Pivots Search
	3.1 Pivots and Matchings
	3.2 The Faugère-Lachartre Algorithm
	3.3 A quasi-linear Heuristic Algorithm
	3.4 A Simple Greedy Algorithm

	4 Parallel Implementation
	5 Experiments and Results
	6 Conclusion and Future Work
	References

