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Public-key cryptographic primitives are time-consuming for resource-constrained
devices. A classical problem is to securely offload group exponentiations from
a (comparatively) weak device — the client — to an untrusted more powerful
device — the server. A delegation protocol must usually meet two security ob-
jectives: privacy – the exponent or the base should not be revealed to a passive
adversary — and verifiability — a malicious server should not be able to make
the client accept an invalid value as the result of the delegated computation.
Most proposed protocols relies on a secret splitting of the exponent and the base
and a considerable amount of literature has been devoted to their analysis.
Recently, Su, Zhang and Xue [The Computer Journal, 2020] and Rangasamy
and Kuppusamy [Indocrypt 2018] proposed outsourcing protocols for modular
exponentiations. They claim that their protocols achieve security (privacy and
verifiability). We show that these claims are flawed and that their schemes are
broken beyond repair. They remain insecure even if one increases significantly
the proposed parameters (and consequently the protocols computational and
communication complexities). Our attacks rely on standard lattice-based crypt-
analytic techniques, namely the Coppersmith methods to find small integer zeroes
of modular multivariate polynomials and simultaneous Diophantine approxima-
tion methods for the so-called approximate greatest common divisor problem.
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1. INTRODUCTION

Group exponentiation is a fundamental operation in
public-key cryptography as it is used in RSA-based
and discrete-logarithm based protocols. Since the
computational resources can be very limited on certain
devices, it is natural, as most of the devices are
online or directly connected to a powerful device,
to consider securely delegating some sensitive and
costly exponentiation to an untrusted device capable
of carrying out large operations. A delegation protocol
must usually meet two security objectives: privacy – the
exponent or the base should not be revealed to a passive
adversary – and verifiability – a malicious server should
not be able to make the client accept an invalid value
as the result of the delegated computation

This paper presents several lattice-based attacks
on two group exponentiation outsourcing protocols
recently proposed by Su, Zhang and Xue [1] and

Rangasamy and Kuppusamy [2]. In both cases, the
proposed protocols are simple and efficient and the
authors claim that they achieve security (privacy and
verifiability). We show that these claims are flawed and
that their schemes are broken beyond repair.

1.1. Prior Work on Exponentiation Outsourc-
ing Protocols

The problem of outsourcing cryptographic operations
has already received a lot of attention but there has
been a recent regain of interest with the development
of mobile technologies. In 2005, Hohenberger and
Lysyanskaya [3] proposed formal security definitions
for securely outsourcing computations from a compu-
tationally limited device, called the client, to untrusted
helpers, called the servers. Delegating a cryptographic
operation presents many risks since they usually involve
sensitive information which should not be revealed to
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potential adversaries. Moreover, since the servers are
not fully trusted, a delegation protocol should enable
clients to verify the correctness of the result returned
by the server with high probability. Obviously, to be of
practical interest, these delegation protocols must have
a computational cost for the client lower than that of
the delegated computation.

Hohenberger and Lysyanskaya notably presented
an efficient scheme to securely outsource group
exponentiation to two, possibly dishonest, servers that
are physically separated (and do not communicate).
Since this separation of the two servers is actually a
strong assumption, recent works focus on outsourcing
group exponentiation to a single computationally
stronger server. It has been a very active research topic
in which numerous protocols have been proposed [4,
5, 6, 7, 8, 9, 10]) and many of these proposals were
subsequently broken [11, 12, 13, 14, 15]).

In 2018, Rangasamy and Kuppusamy [2] presented
a protocol named MExpSOS for outsourcing modular
exponentiations to a single, malicious computational
resource. Their protocol is presented for delegation
of exponentiation modulo a prime number as well as
modulo an RSA modulus. It is simple and efficient,
and does not require any pre-computation from the
client. Rangasamy and Kuppusamy claimed that their
scheme achieve the two fundamental security properties,
namely privacy of inputs and verifiability of outputs,
and claimed that it is the “best to-date outsourcing
scheme for single-server case”. They also proposed
another scheme based on similar ideas for simultaneous
exponentiations.

In 2020, Su, Zhang and Xue [1] presented another
protocol called MCExp for outsourcing exponentiations
modulo an RSA modulus to a single, malicious
computational resource. It requires pre-computation
from the client but relies on similar ideas to those of the
MExpSOS protocol. It is also simple and efficient and Su
et al. claimed that it achieves privacy and verifiability.
They also proposed another scheme for outsourcing
simultaneous composite modular exponentiations.

1.2. Prior Work on Lattice-Based Cryptanaly-
sis

Some attacks we present in the paper rely on
Coppersmith’s methods, a classical technique in lattice-
based cryptanalysis. These methods have been
introduced in 1996 by Coppersmith to find small
integer zeroes of modular polynomials of one or two
variables [16, 17]. Since their introduction, many
generalizations of the methods have been proposed to
deal with more variables (e.g., [18, 19, 20, 21, 22])
or multiple moduli (e.g., [23, 24]). In this paper, we
rely on variants proposed Ernst, Jochemsz, May and
de Weger in 2005 [25] for specific trivariate polynomial
equations of small degree. The techniques from Ernst
et al. are currently the best known for solving the

particular equations we are studying in this article and
any improvement in these techniques would provide an
immediate improvement to our attacks.

We also present attacks based on another standard
lattice-based cryptanalytic technique from simultane-
ous Diophantine approximation for the approximate
greatest common divisor problem [26, 27, 28]). This
computational problem is to determine a secret inte-
ger p when one is given many samples of the form
xi = p · qi + ri for small error terms ri. A simple ap-
proach for solving it relies on a simple lattice-based al-
gorithm due to Lagarias [26] for simultaneous Diophan-
tine approximation. The technique was first proposed
by Howgrave-Graham in [27], then expanded in [28].

1.3. Contributions

We prove that the protocols MExpSOS and MCExp
as proposed in [2] and [1] are insecure. Both
schemes do not achieve the claimed privacy and
verifiability security properties (without increasing the
size of the parameters to the point of making the
delegation protocol more expensive than the modular
exponentiation computation itself).

We first underline a major security break in MCExp
from a single execution of the protocol, as two of its
parameters are too small to resist exhaustive search.
This allows us to obtain readily a multiple of the Euler
totient function ϕ(N) of the underlying RSA modulus
N and then using a classical algorithm due to Rabin [29]
to factor N and obtain the (supposedly) secret base and
exponent of the delegated exponentiation.

We then consider different ways of fixing the scheme
MCExp (by increasing only one of the small parameters,
then both of them). Using Coppersmith’s methods, we
show that even the modified schemes are also broken,
from a single execution of the protocol, for a wide range
of parameters. For each variant, we present a simple
attack that allows to factor N and retrieve the base
and exponent of the delegated exponentiation. This
information is sufficient to also break the verifiability
property of MCExp.

As a final nail in MCExp’s coffin, we present an
even more devastating attack against the modified
protocol when the adversary can passively eavesdrop
several runs of the delegation protocol for the same
exponent. This is a particularly important use-case
for the RSA primitive in which the client may want
to delegate the computation of signatures for a fixed
secret signing exponent. Our attack relies methods
for the approximate greatest common divisor problem.
The methods used on this attack can also be used to
improve the attack by Mefenza and Vergnaud [15] on
a server-aided RSA protocol with additive key splitting
in the case where the adversary has access to several
delegations. Finally, since MExpSOS is very close to the
modified MCExp protocol, we can also apply our attack
and show that MExpSOS does not achieve privacy and
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verifiability.
The remainder of this paper is organized as follows.

Section 2 introduces the notations, the security
definitions and describes the MCExp and MExpSOS
outsourcing computation schemes. Section 3 reviews
the lattice-based cryptanalytic techniques we used in
the paper. Our attacks against the MCExp protocol
when the client outsources a single exponentiation are
described in Section 4. Eventually, Section 5 presents
our devastating attacks against MExpSOS and MCExp
in the case where the adversary is able to observe more
than one exponentiation delegation.

2. PRELIMINARIES

2.1. Notations

All logarithms are base 2. We denote the security
parameter by λ ∈ N which is given as input to
all algorithms in unary form 1λ. Algorithms are
randomized unless otherwise stated, and PPT stands
for “probabilistic polynomial-time,” in the security
parameter. We might use the terms “efficient” and PPT
interchangeably. We denote random sampling from a
finite set X according to the uniform distribution with

x
$←− X. We also use the symbol

$←− for assignments from
randomized algorithms, while we denote assignment
from deterministic algorithms and calculations with the
symbol ←. If n is an integer, we write Zn for the ring
Z/nZ, Z∗n for the invertible elements of Zn and ϕ(n) for
the Euler totient function of n (with ϕ(n) = #Z∗n). As
usual, the notation poly(λ) denotes any polynomial in λ
and f ∈ negl(λ) denotes a function that decreases faster
than the inverse of any polynomial in λ; such functions
are called negligible.

2.2. Exponentiation Delegation: Definitions

In the following, we consider group exponentiation
protocols in two different settings, namely public
prime-order groups and in secret composite order
groups. To simplify the exposition3 we consider only
exponentiation in the multiplicative group of the residue
ring ZN for some integer N ≥ 2. These settings are
formalized thanks to a PPT algorithm GrpGen which
is given as input a security parameter λ and outputs a
pair par = (N,ϕ(N)) where log(N) = poly(λ):

• we say that GrpGen is a prime-order group
generator if for all λ ∈ N and all par = (N,ϕ(N))
output by GrpGen(1λ), N is a prime number (and
thus ϕ(N) = N − 1);

• we say that GrpGen is an RSA group generator if
for all λ ∈ N and all par = (N,ϕ(N)) output by
GrpGen(1λ), N = pq is the product of two distinct
odd primes p and q (and thus ϕ(N) = (p−1)(q−1)).

3It is worth noting that most of our attacks can be applied
directly to exponentiation in general groups.

We consider the delegation of an exponentiation as
a 2-party PPT interactive protocol between a client
C and a server S. It is natural to assume that C
knows the group Z∗N in which it needs to perform an
exponentiation and following [2, 1], we also assume that
it knows its order ϕ(N). We assume that S does not
know the group Z∗N a priori ; this approach somehow
contradicts Kerckhoff’s principles [30] but it is adopted
in [2]. Anyway, we will show that the schemes from [2, 1]
are insecure even with this very strong assumption.

Given a security parameter λ, a pair par = (N,ϕ(N))
output by GrpGen(1λ), u ∈ ZN and a ∈ Zϕ(N), we

denote as (yC , yS , tr) ← (C(1λ, par, (a, u)),S(1λ)) the
protocol at the end of which C gets yC and S gets
yS and the string tr denotes the full transcript of the
interaction.

In the present paper, the protocols investigated are
all of the same form: (1) C performs some private
computation and then sends to S one or several bases
and their corresponding exponents and a modulus
(possibly different from N) to the server; (2) S then
performs the required exponentiations (whose bases,
exponents and modulus were sent to him by C) and
sends back the obtained values to C; (3) C finalizes the
computations thanks to the values sent by S. The
protocols only require one round of communication,
their transcripts tr thus consist only of the strings sent
at the end of steps (1) and (2) and the output of S is
yS = ∅ the empty string.

The correctness requirement for delegation of a
exponentiation means that when the server and the
client follow honestly the protocol, the client’s output
is actually the expected exponentiation.

Definition 2.1 (Correctness). Let λ be a positive
integer. We say that (C,S) satisfies correctness if

Pr

yC = ua

∣∣∣∣∣∣∣
par = (N,ϕ(N))← GrpGen(1λ),

u
$←− ZN , a

$←− Zϕ(N),

(yC , yS , tr)← (C(1λ, par, a, u),S(1λ))

 = 1.

We define two (weak) security notions that we call
instance-hiding and exponent-hiding and which are
variants of the similar notion used in [13, 14]. They
formalize the idea that a passive adversary should
not be able to retrieve the base and the exponent
or the exponent (respectively) used in one or several
runs of the delegation protocol. Exponent-hiding is
naturally weaker than instance-hiding. Both notions
are weaker than the indistinguishability notion from
[9, 13, 14] which is itself weaker than the simulation-
based security notion from [3]. The protocols from [2]
and [1] were claimed to achieve the latter notion but
we will actually show that they do not even achieve
our weak instance-hiding and exponent hiding security
properties (respectively).

The probabilistic computational experiments de-
scribed in Figure 1 provide a formal description of
these security notions. For the instance-hiding no-
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Experiment Expih(A, C, λ)

par = (N,ϕ(N))← GrpGen(1λ)

(a, u)
$←− Zϕ(N) × ZN

i← 0, tr0 ← ∅
(α, ch base, ch exp, aux, (a0, u0))← A(1λ, par)
while α 6= stop do

if ch base = true then
ui ← u

if ch exp = true then
ai ← a

(yi, (α, ch base, ch exp, aux, (ai+1, ui+1)), tri)

← (C(1λ, par, (ai, ui)),A(aux))
i← i+ 1

Return 1 if (ai, ui) = (a, u) and 0 otherwise

Experiment Expeh(A, C, λ)

par = (N,ϕ(N))← GrpGen(1λ)

a
$←− Zϕ(N)

i← 0, tr0 ← ∅
(α, ch exp, aux, (a0, u0))← A(1λ, par)
while α 6= stop do

if ch exp = true then
ai ← a

(yi, (α, ch exp, aux, (ai+1, ui+1)), tri)

← (C(1λ, par, (ai, ui)),A(aux))
i← i+ 1

Return 1 if ai = a and 0 otherwise

FIGURE 1. Random Experiment for Instance-Hiding and Exponent-Hiding Security Notions

tion, given a residue group description (N,ϕ(N)) out-
put by GrpGen(1λ) for some security parameter λ, a
base u ∈ ZN and an exponent a ∈ Zϕ(N) are picked
uniformly at random. The adversary A is then allowed
to run the delegation protocol multiple times with arbi-
trary inputs of its choice (ai, ui) in such a way that
it can set ai = a (if ch exp = true) or ui = u (if
ch base = true). Setting both flags to true, the del-
egation protocol is run on the input challenge (a, u)
and setting both flags too false, the delegation protocol
is run on some instance completely chosen by A (but
it may obtain some information from such executions).
The memory of the adversary for these multiple exe-
cutions is stored in the variable aux. Eventually, the
adversary A succeeds in this experiment if, when it de-
cides to stop by setting the flag α to stop, it outputs
the challenge pair (a, u). The exponent-hiding security
notion is defined similarly but focuses only on the ex-
ponent.

Definition 2.2 (Instance-hiding and Exponent-hid-
ing). Let GrpGen be a group generator and let (C,S)
be a client-server protocol for a delegated computation
of exponentiation for GrpGen. Let τ : N → N and
ε : N → [0, 1] be two functions. We say that (C,S)
satisfies (τ, ε)-instance-hiding ( resp. (τ, ε)-exponent-
hiding) if, for any algorithm A, it holds that for all
integer λ ∈ N

Pr[ν = 1|ν ← Expih(A, C, λ)] ≤ ε(λ)

( resp. Pr[ν = 1|ν ← Expeh(A, C, λ)] ≤ ε(λ) )

where Expih(A, C, λ) ( resp Expeh(A, C, λ)). is the
computational random experiment described in Figure
1 in which A runs in time at most τ(λ).

The interactive protocol (C,S) is deemed instance-
hiding-secure ( resp. exponent-hiding-secure) if for all
polynomial τ : N → N and all ε : N → [0, 1], if (C,S)
does not satisfy (τ, ε)-instance-hiding ( resp. (τ, ε)-
exponent-hiding), then ε is negligible.

Another important security definition called verifia-
bility requires that the client should not accept a wrong
value for the exponentiation which is delegated to the
server. A delegation protocol that does not ensure ver-
ifiability may cause severe security problems (in par-
ticular if the exponentiation computation occurs in the
verification algorithm of some authentication protocol).

Definition 2.3 (Verifiability). Let GrpGen be a
group generator and let (C,S) be a client-server protocol
for a delegated computation of exponentiation for
GrpGen. Let τ : N → N and ζ : N → [0, 1] be two
functions. We say that (C,S) satisfies (τ, ζ)-verifiability
if, for any algorithm A , it holds that for all integer
λ ∈ N,

Pr

yC = ua

∣∣∣∣∣∣∣∣
par = (N,ϕ(N))← GrpGen(1λ),

u
$←− ZN , a

$←− Zϕ(N),
(yC , yS , tr)

← (C(1λ, par, a, u),A(1λ))

 ≥ ζ(λ).

where A runs in time at most τ(λ).

In practice, it is actually important to achieve a
stronger notion of verifiability in which the adversary
is allowed to run several executions of the delegation
protocol with the client (for the same parameters
par = (N,ϕ(N))) before trying to make them accept
a wrong value in a subsequent execution. We say that
(C,S) satisfies (τ, ζ)-strong verifiability if whenA’s total
running time is upper-bounded by τ(λ) (over all their
executions), then the probability that C outputs an
erroneous value for ua is at least ζ(λ).

2.3. Exponentiation Delegation: Protocols

In this section, α, β, γ ≥ 0 denote real parameters
specifying the sizes of various variables in the delegation
protocols.

We first provide a short description of the classical
“textbook” RSA public-key encryption scheme [31]:
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Key Generation: On input a parameter λ ∈ N, the
algorithm picks uniformly at random two distinct
prime numbers p and q of bit-length λ. It then
computes N = pq and ϕ(N) = (p − 1)(q − 1)
the Euler’s totient function of N . It picks an
integer e ∈ {1, . . . , ϕ(N)} coprime with ϕ(N) and
computes the integer d ∈ {1, . . . , ϕ(N)} such that
ed ≡ 1 mod ϕ(N).

The key-generation algorithm outputs (N, e) as the
public-key and (N, d) as the private key.

Encryption: To encrypt a plaintext m ∈ ZN for a
public key (N, e), the encryption algorithm outputs
c = me mod N .

Decryption: To decrypt a ciphertext c ∈ ZN with
a private key (N, d), the decryption algorithm
outputs m = cd mod N .

The computation of m = cd mod N in the decryption
algorithm requires O(log d) = O(logN) multiplications
in ZN . In some settings, this is too costly for a
weak client and so the client can delegate part of this
computation to a more powerful server. Obviously, the
client wants to do so without revealing its private key
d to the server.

2.3.1. RSA Delegation with Additive Splitting
In the server-aided protocol with additive splitting (see
Figure 2), the client picks uniformly at randomly k in
{1, . . . , Nα} and s in {1, . . . , Nβ}, and computes the
integer

A = d− s+ k · ϕ(N).

The client then sends c, A and N to the server which
computes m′ = cA mod N and sends it back to the
client. The client eventually computes and outputs
m = m′ · cs mod N as the decryption of c.

The number of modular multiplications to be
performed by the client is proportional to the bit-length
of s (and thus the smaller is β, the more efficient is the
delegation protocol). In this protocol, the base m is
sent in clear to the server, so the instance-hiding and
exponent-hiding security notions are identical. Since
the value returned by the server is not checked in any
way, the protocol does not achieve verifiability. Mefenza
and Vergnaud [15] pointed out that the best known
attack on RSA with partial key exposure due to Joye
and Lepoint [32] can be used to attack the protocol
with a single run of the delegation protocol (see below).

2.3.2. The Su-Zhang-Xue (MCExp) Protocol
Recently, Su, Zhang and Xue [1] presented a protocol
called MCExp for privately and verifiably outsourcing
a modular exponentiation ua mod N where N is an
RSA modulus, a is some private exponent (but not
necessarily the inverse of a public value modulo ϕ(N)
as in the previous section) and u is some private base.

In the MCExp protocol, the client picks two random
secret values r, s in {2, . . . , 11}, and two random integers
k1 and k2 of unspecified size. We assume that they are
picked uniformly at random in {0, . . . , Nα} and Figure 3
presents a generalized version of the MCExp protocol
where s is picked uniformly at random in {0, . . . , Nβ}
and r is picked uniformly at random in {0, . . . , Nγ} (for
some parameters β and γ).

The client then computes A1 = a − s + k1 · ϕ(N)
and A2 = a · r + k2 · ϕ(N), and sends them (in a
random order) together with ω1, ω2 (two bases related
to u) and the modulus N to the server which computes
R1 = wA1

1 mod N and R2 = wA2
2 mod N and two

other4 modular exponentiations R3 and R4 (with bases
and exponents which are not relevant for our attacks).
It then sends all of this back to the client, which
eventually computes ua (and uses the other values to
check the validity of the computation). The values of
A1 and A2 are thus known to the server, but not their
order.

The values r and s are not known by the server and
are used to check the validity of the output ua. More
precisely, the client checks whether an equality of the
form (

Rt13 R1S1u
s
)r

= R4R2S2 (1)

holds (where t1 is a “small” (private) exponents known
by the client and S1, S2 are pre-computed values in ZN )
and if it is the case, they output

Rt13 R1S1u
s

as the purported value for ua. Note that if, an adversary
can guess the integer r and identifies correctly R1,
R2, R3 and R4, they can then set R̃1 = R1 · v and
R̃2 = R2 · vr for an arbitrary element v ∈ ZN ; the
4-tuple (R̃1, R̃2, R3, R4) then still satisfies (1) and the
client will output

Rt13 R̃1S1u
s = Rt13 R1vS1u

s = ua · v

which is different from ua for v 6= 1. Su et al. [1,
Theorem 1.8 ] claim that their scheme achieves (τ, α)-
verifiability for an unbounded τ and a constant α equal
to 119/120. The previous remark shows that if a
malicious server correctly guesses the integer r and
the values R1 and R2, then they can make the client
accept an incorrect value. For MCExp protocol with
r ∈ {2, . . . , 11}, this occurs with probability 1/10 · 1/4 ·
1/3 = 1/120 ; as such [1, Theorem 1.8 ] therefore claims
that this is the best possible attack.

In the following, we present several attacks against
the privacy of the MCExp protocol (and variants with
larger parameters). Namely, we show that it does not

4In [1], it is mentioned that the four exponents are sent in a
random order. In this paper, we assume that we can distinguish
A1 and A2 from the two other exponents (which is natural since
they have a priori different bit-lengths). If the four exponents
are of the same bit-length this increase only the complexity of
the attacks from Section 4 by a constant factor 6.
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Client Server
sk = (d, ϕ(N)) pk = (N, e)

Input = c

s
$←− {0, . . . , Nβ}; k $←− {0, . . . , Nα}

A← d− s+ k · ϕ(N)
c, A,N−−−−−−−−−−→

m′ ← cA mod N
m′←−−−−−−−−−−

m← m′ · cs mod N
Output m

FIGURE 2. Server-aided RSA decryption with additive splitting

Client Server
Inputs = a, u

s
$←− {0, . . . , Nβ}; r $←− {0, . . . , Nγ}

k1, k2
$←− {0, . . . , Nα} ; b

$←− {0, 1}
A1 ← a− s+ k1 · ϕ(N)
A2 ← ra+ k2 · ϕ(N)

A1+b, A2−b, N , (...)
−−−−−−−−−−−−−−−→

(... does some computation...)
R1, R2, R3, R4←−−−−−−−−−−−−−−−

(... does some computation...)
Output ua

FIGURE 3. Partial description of the MCExp Protocol. The (...) notation means “some data” (not relevant in this paper).

achieve the exponent-hiding security notion (and thus
that Theorem 1.6 from [1] is also flawed). As a by-
product of our attacks, an adversary is able to retrieve
the Euler totient function ϕ(N), r and s in addition
to the exponent a. Therefore, we also show that the
scheme proposed by Su et al. does not achieve (τ, α)-
verifiability for τ = poly(n) and α larger than 11/12.

2.3.3. The Rangasamy-Kuppusamy (MExpSOS) pro-
tocol

In this section, we briefly recall the protocol MExpSOS
proposed by Rangasamy and Kuppusamy in [2]. In
their protocol (see Figure 4), a client wants to privately
and verifiably outsource a modular exponentiation
ua mod N where N is either a prime number or
an RSA modulus. Rangasamy and Kuppusamy
made the very strong assumption that the modulus
N is unknown to the adversary (whereas following
Kerckhoff’s principles [30], it is more natural to assume
that the adversary knows the modulus since it is usually
a part of the public parameters or the public key).
Moreover, they add the privacy requirement that the
delegation protocol should not reveal any information
on N to a malicious server.

To mask the base u, the client generates an integer
L = `N which is a multiple of N (where ` is prime

number large enough so that factoring L is assumed
intractable) and sets U = u+N ′ mod L (where N ′ is
another multiple of N) as the base for the delegated
exponentiation. Obviously, this integer L has to be
the same for all delegated computation since otherwise
a simple greatest common divisor computation would
reveal N as gcd(L,L′) = gcd(`N, `′N) = N for ` 6= `′

two distinct prime numbers.

The client chooses two random integers r, s uniformly
at random in {0, . . . , Nβ} for some parameter 0 ≤ β < 1
as well as two integers k1 and k2 of unspecified size;
we again assume that they are picked uniformly at
random in {0, . . . , Nα}. It computes the values A1 =
a − s + k1ϕ(N) and A2 = a · r + k2ϕ(N) and sends
them to the server in a random order, along with U
and L. The server computes R1 = UA1 mod L and
R2 = UA2 mod L and sends them back to the client.
The client checks whether (R1u

s)r ≡ R2 mod N and
then recovers ua as ua ≡ R1u

s mod N .

As above, if an adversary can guess the integer r
(and the correct order for R1 and R2), they can then
set R̃1 = R1 · v mod L and R̃2 = R2 · vr mod L
for an arbitrary value x; the pair (R̃1, R̃2) passes the
verification equation the client will output ua ·v mod N
instead of ua mod N . Rangasamy and Kuppusamy [2,
Theorem 2 ] claim that their scheme achieves (τ, α)-
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Client Server
pk = ∅, sk = (a, ϕ(N), N)

Inputs = u, a
Secrets = N,ϕ(N), p

U = u+N ′ ; L = `N

s, r
$←− {0, . . . , Nβ}; k1, k2

$←− {0, . . . , Nα} ; b← {0, 1}
A1 ← a− s+ k1 · ϕ(N)
A2 ← ra+ k2 · ϕ(N)

U,L,A1+b, A2−b−−−−−−−−−−−−−−−→
(... does some computation...)

R1, R2←−−−−−−−−−−−−−−−
(... does some computation...)

Output ua

FIGURE 4. Partial description of the MExpSOS Protocol.

verifiability for an unbounded τ and α equal to 2Nα.
The previous remark shows that if a malicious server
correctly guesses the integer r and identifies R1 and R2,
then they can make the client accept an incorrect value.
This occurs with probability 2Nα and [2, Theorem 2 ]
thus claims that this attack is the best possible.

In the following, we present several attacks against
the privacy of the MExpSOS protocol. Namely, we show
that it does not achieve the instance-hiding security
notion (and thus that Theorem 1 from [2] is also flawed).
As a by-product of our attacks, an adversary is able
to retrieve the modulus N , the Euler totient function
ϕ(N), r and s in addition to the pair (a, u). Therefore,
we also show that the scheme proposed by Rangasamy
and Kuppusamy for useful parameters does not achieve
(τ, α)-verifiability for τ = poly(n) and a non-trivial α.

3. LATTICE-BASED CRYPTANALYSIS

A lattice L is a discrete subgroup of Rn isomorphic to
Zω for some ω ∈ N. We denote by λ1(L), λ2(L), etc.
the successive minima of the lattice and we define the
volume of L by vol(L) =

√
detBBt, where the rows of

B span the lattice.
The LLL algorithm, due to Lenstra, Lenstra and

Lovász [33] is one of the main tool of lattice-based
cryptanalysis. We remind here some properties of a
LLL-reduced basis, as seen in [34, Chapter 2 ] and refer
the reader to [34] for additional details on lattice-based
cryptanalysis.

Theorem 3.1. Let (b1, . . . , bω) be an LLL-reduced
basis of a lattice L in Rn (with δ = 3/4). Then

1. ‖b1‖ ≤ 2(ω−1)/4(volL)1/ω

2. For all i ∈ {1, . . . , ω}, ‖bi‖ ≤ 2(ω−1)/2λi(L)

3. ‖b1‖ × · · · × ‖bω‖ ≤ 2ω(ω−1)/4 vol(L)

From Theorem 3.1, we obtain a useful corollary:

Lemma 3.1. Let L be a lattice of dimension ω. In
polynomial time, the LLL algorithm outputs two reduced
basis vectors b1 and b2, that satisfy

‖b1‖ ≤ ‖b2‖ ≤ 2
ω
4 vol(L)

1
ω−1

Proof. We can assume without loss of generality that
‖bi‖ ≤ ‖bi+1‖ in an LLL-reduced basis (we may swap
basis vectors that violate this condition). Hence ‖b1‖×
(‖b2‖)ω−1 ≤ 2ω(ω−1)/4 vol(L).

Raising to the power 1/(ω − 1), we obtain:
(‖b1‖)1/(ω−1) × ‖b2‖ ≤ 2ω/4 vol(L)1/(ω−1).

All we have to do left is noticing that ‖b1‖ is greater
than 1 (we assume that the input basis has integer
coordinates).

The Gaussian heuristic “predicts” that if L is a full-
rank lattice and C is a measurable subset of Rn, then
the number of points of L∩C is roughly vol(C)/ vol(L).
In particular, this asserts that the size of the shortest
(non-zero) vector of L should be close to

√
n vol(L)1/n.

3.1. Approximate Common Divisor Problem

In this section, we recall a simple approach for
solving the so-called approximate common divisor
problem. It relies on a simple lattice-based algorithm
due to Lagarias [26] for simultaneous Diophantine
approximation. The technique was first proposed by
Howgrave-Graham in [27], then expanded in [28].

We consider an adversary that is given t integers
xi = pqi + ri where p is an n-bit integer, qi is an αn-bit
integer and ri is a βn-bit integer, where β < 1. Since
the ri’s are “small”, the xi are approximate multiples
of p and we have xi/x0 ' qi/q0 for i ∈ {1, . . . , t − 1}.
In other words, the rationals qi/q0 are simultaneous
rational approximations with the same denominator of
the t − 1 rationals xi/x0 for i ∈ {1, . . . , t − 1}. If the
adversary can compute one such approximation, it can
obtain q0 and then r0 as x0 mod q0 and p as (x0−r0)/q0.
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This means that we are looking for q0, . . . , qt such
that xi/x0 ' qi/q0 for all i ∈ {1, . . . , t − 1}. This can
be rewritten by saying that q0xi − qix0 = q0ri − qir0
must be “small”. Following [26], the adversary can thus
construct the integer matrix:

M =


2βn+1 x1 x2 . . . xt−1

0 −x0 0 . . . 0
0 0 −x0 . . . 0

. . .

0 0 0 . . . −x0

 (2)

The rows of M generate a lattice L of rank t that
contains the “short” vector v = (q0, q1, . . . , qt−1)M =
(q02βn+1, q0r1 − q1r0, . . . , q0rt−1 − qt−1r0).

Each coordinate of v is less than 2 × 2n(α+β) in
absolute value, so the norm of v is upper-bounded by
2
√
t × 2n(α+β). The volume of the lattice is vol(L) =

|det(M)| = 2βn+1xt−10 ≈ 2βn+(t−1)(α+1)n. Therefore if

2
√
t× 2n(α+β) <

√
t|det(M)|1/t

then we expect by the Gaussian heuristic that v is a
shortest non-zero vector in L (i.e. λ1(L) = ‖v‖) and
that the second minima λ2(L) should be close to

√
t|det(M)|1/t ≈

√
t2(βn+(t−1)(α+1)n)/t.

Running the LLL algorithm on the matrix M yields
a reduced basis whose first vector is guaranteed to
be at most 2t/2 times longer than the norm of
v the (heuristically) shortest vector of the lattice
(Theorem 3.1, item 2). Therefore, if

2t/2‖v‖ ≤ 2
√
t× 2t/22n(α+β) <

√
t2βn/t+(t−1)(α+1)n/t

the length of the first vector output by LLL is strictly
less than λ2(L) and it follows that the LLL algorithm
will (heuristically) return a shortest vector of L.

If we forget about the constant terms, then this yields
a condition on the exponents:

t2 − 2nt(1− β) + 2n(1− β + α) < 0

The discriminant ∆ = 4n2((1−β)2−2(1−β+α)/n) is
necessarily positive for large enough n, so the inequation
holds between the two roots:

t± = n(1− β)

(
1±

√
1− 2

1− β + α

n(1− β)2

)
.

We focus on the smallest possible value of t satisfying
the constraints. Using the Taylor expansion 1 −√

1 + 2x = x+O(x2) near zero, we find that the small
root is:

t− = 1 +
α

1− β
+O(1/n).

This is the minimal required value of t so that the
attack works using the LLL algorithm, and thus in
polynomial time — subject to the condition that ∆ > 0,
or equivalently n > 2(1− β + α)/(1− β)2.

3.2. Coppersmith’s Methods

Some of our attacks requires the ability to find “small
roots” of multivariate polynomials over the integers. To
retrieve these values, we use variants of Coppersmith’s
methods [16, 17] presented in [25], that we now briefly
present.

Let us consider a polynomial in Z[x, y, z]:

f(x, y, z) =

ω∑
i=1

aix
diyeizfi .

We assume that there is “small root” (x0, y0, z0) such
that f(x0, y0, z0) = 0 and that we are given bounds
X,Y and Z such that |x0| < X, |y0| < Y and |z0| < Z.

For h(x, y, z) ∈ Z[x, y, z], we denote ‖h(x, y, z)‖ the
Euclidean norm of the vector formed by its coefficients
(i.e. the root square sum of the coefficients of
monomials in the polynomial).

Lemma 3.2 (Howgrave-Graham). Let h(x, y, z) ∈
Z[x, y, z] be the sum of at most ω monomials and let
X,Y, Z > 0. For any (x0, y0, z0) ∈ Z3 that satisfies
|x0| < X, |y0| < Y, |z0| < Z, if

f(x0, y0, z0) ≡ 0 mod c and ‖f(xX, yY, zZ)‖ < c√
ω
,

then f(x0, y0, z0) = 0.

A possible strategy to find the small root (x0, y0, z0)
of a polynomial h consists in constructing a lattice L of
dimension ` containing only polynomials gi such that
gi(x0, y0, z0) ≡ 0 mod c. Then we reduce the lattice
basis using LLL, we extract the two first polynomials
g1, g2 from the reduced basis. If they satisfy the
bound of Lemma 3.2, then these polynomial vanish on
(x0, y0, z0) over Z (not modulo c). Under the heuristic
assumption that the polynomials f, g1, g2 define an
algebraic variety of dimension 0, then we can find our
small root by solving a polynomial system in 3 variables
and 3 equations (by computing a Groebner basis for
example).

From Lemma 3.1, we know that the LLL al-
gorithm returns two vectors satisfying ‖b1‖≤‖b2‖≤
2

ω
4 vol(L)

1
ω−1 . Thus, the condition

√
ω2

ω
4 vol(L)

1
ω−1 <

c implies that polynomials corresponding to the two
shortest reduced basis vectors of an LLL-reduced ba-
sis satisfy Howgrave-Graham’s bound. In practice, we
ignore terms that do not depend on c, and check only
if vol(L) ≤ cω−1.

The difficulty is to optimize the value of c and to
choose the correct polynomials gi to spawn the lattice.
This problem has been addressed by Ernst et al. [25].
Using polynomials gi of the form

xiyjzkf(x, y, z)X lY vZw and c · xiyjzk,

Denoting W the value W = ‖f(xX, yY, zZ)‖, they
obtain the following results:

The Computer Journal, Vol. ??, No. ??, ????



Cryptanalysis of Modular Exponentiation Outsourcing Protocols 9

Theorem 3.2 ([25]). With the above notations, for
every ε > 0, there exist a W0 such that, for every
W ≥W0, the following holds: there is a PPT algorithm
that recovers a small root (x0, y0, z0) of f(x, y, z) if there
exists τ ≥ 0 in the two following cases:

i) f(x, y, z) = a0 + a1x+ a2y + a3yz and

X1+3τY 2+3τZ1+3τ+3τ2

< W 1+3τ−ε.

ii) f(x, y, z) = a0 + a1x+ a2y + a3z + a4yz and

X2+3τY 3+6τ+3τ2

Z3+3τ < W 2+3τ−ε.

4. ATTACKS AGAINST MCEXP USING A
SINGLE DELEGATION

In this section, we describe polynomial-time attacks
against the MCExp protocol for the exponent-hiding
security notion after the adversary has passively
observed a single exponentiation delegation. The
attacks completely break the scheme since they recover
in addition the (secret) factorization of N . The different
attacks for the different variants of the protocol MCExp
are summarized in Table 1.

4.1. A Straightforward Attack on the MCExp
Protocol

As mentioned in the description of the protocol, the
random masks s and r are picked in the very small
set of integers {2, 3, . . . , 11}. It is therefore possible to
exhaustively search their values. The adversary observe
A1+b and A2−b. They do not know b, but there are
only two possibilities to correctly identify A1 and A2,
so that any attack only has to be repeated twice. Once
the adversary has guessed the values of b, r and s, they
can then compute

r(A1 − s)−A2 = (rk1 − k2)ϕ(N),

and therefore learn a multiple of ϕ(N). Note that there
are only 200 possible values (10 for s, 10 for r, two
possible choices for b) and that they can be explicitly
computed.

In [29], Rabin provided a probabilistic polynomial-
time algorithm which given an RSA modulus N = pq
and a multiple of its Euler’s totient function ϕ(N),
outputs the factorization (p, q) in expected polynomial
time O(log(N)3). This in turns allows to reconstruct
the secret key (by running the same algorithm as the
legitimate user).

All that is left to do is to run Rabin’s algorithm on
the 200 candidates multiple of ϕ(N): one of them is
going to reveal the factorization of the RSA modulus N .
Once the adversary knows the factorization of N and
thus ϕ(N), it also knows the values b, r and s with
certainty and from A1 it can simply retrieve the (secret)
exponent a as [A1 mod ϕ(N)]+s. The MCExp protocol

therefore does not achieve (τ, ε)-exponent hiding for
τ = Ω(log(N)3) and ε = 1.

As explained in Section 2.3.2, when the adversary
knows b and r, they can make the client accept
an incorrect value as the result for the delegated
exponentiation with probability 1. The MCExp protocol
therefore does not achieve (τ, ζ)-verifiability for τ =
Ω(log(N)3) and ζ = 0.

We implemented this attack for a modulus N of 2048
bits and α = 1 (i.e., k1, k2 ' N): it runs in only 1.7s on
a laptop.

4.2. Generalizations of MCExp

In its original presentation, the MCExp protocol is thus
practically broken, mainly because of the bad design
decision to limit r and s to extremely small numbers.
In the rest of this paper, we show that the problem is
in fact more fundamental.

As described in Figure 3, we now consider a
generalization of the MCExp protocol where the two
parameters r and s can be chosen in larger sets that
prevent exhaustive search. More precisely, we assume
that s and r are integers picked uniformly at random
with 0 ≤ s < Nβ and 0 ≤ r < Nγ where β, γ ≥ 0 are
constant parameters. Because the client must perform
two exponentiations with exponents s and r, it follows
that β + γ should be quite smaller than 1, otherwise
the computational load of the client is not significantly
reduced and the protocol misses the point.

Let t = p+ q− 1 so that ϕ(N) = N − t. When p and
q are balanced, it always holds that t ≤ 3N1/2. Let us
also denote by k := rk1 − k2, which is unknown.

When the attacker can only observe a single
delegation, a simple attack strategy consists in solving
the following non-linear system over the integers:

rA1 −A2 − kN = rs− kt
|s| ≤ Nβ

|r| ≤ Nγ

|t| ≤ 3N1/2

|k| ≤ Nα+γ

(3)

The actual secret parameters (s, r, t, k) are a solution
of this system. If this solution is unique, then solving (3)
guarantees the recovery of all secrets. This in turn
allows the adversary to factor N by computing ϕ(N)
and solving the quadratic equation X2 − tX + N = 0
(whose roots are p and q).

However, depending on the values of α, β, γ, this
system may have more than one solution. For instance,
if (s, r, t, k) satisfies the equation, then (s+k, r, t+ r, k)
also does, assuming that α < β and γ < 1/2. In the
sequel, we focus on cases where (3) has a single solution.

4.3. Attack using Euclidean Division

Let us assume that r is known. Define B := rA1 − A2,
whose value is also known. Equation (3) becomes:
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§ Type α β γ

4.1 Straightforward arb. ' 0 ' 0

4.3 Euclidean division ≤ 1/2 < α ' 0

4.4 Linearization ≤ 1/2 < α < 1/4− α/2
4.5 Coppersmith > 1/2 / (α+ 1−

√
4α2 + 2α− 2)/3 ' 0

4.6 Coppersmith arb. ' 0 / (7− 2
√

7 + 6α)/6

TABLE 1. Summary of the attacks against the MCExp protocol

B = rs + kϕ(N). If rs is sufficiently small, then this
implies that B ' kN , hence the quotient B/N should
be close to k. Indeed, dividing by N yields:

B/N = (rs+ kN − kt)/N = k + (rs− kt)/N

So the quotient of the Euclidean division of B by N is

bB/Nc = k +

⌊
rs− kt
N

⌋
If 0 ≤ rs− kt < N , then bB/Nc = k. If −N ≥ rs− kt,
then bB/Nc = k − 1. By assumption on the efficiency
of the delegation protocol, we have β + γ < 1 and
thus rs ≤ Nβ+γ < N/2 (for λ sufficiently large). If
we assume moreover that α + γ < 1/2, then we have
kt = (rk1 − k2)t ≤ NγNα · 3N1/2 < N/2 (for λ
sufficiently large) and we easily recover k as bB/Nc or
bB/Nc+ 1..

Then, once k is known, we have B − kN = rs − tk.
If β + γ < α, we have rs < k with overwhelming
probability, and we can recover both rs and t by
computing the Euclidean division of B−kN by k. With
t, we obtain ϕ(N), and therefore we can factor N in
polynomial time by solving a quadratic equation.

An interesting application is the following. Assume
that r is small enough to be guessed by the adversary
(which is the case when 2 ≤ r ≤ 11 in the original
MCExp protocol), and that β < α < 1/2. The attack
presented in this section shows that observing a single
delegation is enough to factor N instantly in this setting
in time O(log(N)2). As in Section 4.1, the knowledge
of r, p, q is sufficient for the adversary to compute s
and then the secret exponent a (and also to break the
verifiability property of the protocol).

To sum up, the modified MCExp protocol where r
is picked uniformly at random in {2, . . . , 11} and s
is picked uniformly at random in {0, . . . , Nβ} with
β < α < 1/2 does not achieve (τ, ε)-exponent hiding nor
(τ, ζ)-verifiability for τ = Ω(log(N)2), ε = 1 − negl(λ)
and ζ = negl(λ). This attack was tested successfully in
practice with a modulus N of 2048 bits, k1 and k2 of
992 bits, s of 960 bits and r = 11 ; it takes 0.1ms.

4.4. Attack using Linearization

In this section, we present an attack on the modified
MCExp protocol when r is unknown (i.e. picked in a set
too large to allow exhaustive search). In this case, we
could try to partially solve (3) the easy way, by getting

rid of the non-linear term rs− kt. Indeed, a solution of
(3) is also a solution of the integer linear program: |rA1 − kN −A2| ≤ Nα+γ+1/2

|r| ≤ Nγ

|k| ≤ Nα+γ
(4)

It is not immediately obvious whether or not (4)
admits other solution than the “right” values of (r, k),
but it does not matter because there is a very efficient
way to find the right ones.

Solving (4) amounts to finding a vector close to the
vector (0, A2) in the Euclidean lattice L spanned by the
rows of:

G =

(
xN2α+2γ A1

0 N

)
.

where x > 1 is a constant to be determined later.
We claim that if α + 2γ < 1/2, then (r,−k)G

is (heuristically) the lattice vector closest to (0, A2).
Because solving the Closest Vector Problem in
dimension two can be done efficiently, it follows that
r and k can both be retrieved efficiently when this
condition is met. Combined with the “Euclidean
division attack” of the previous section, this shows that
a single delegation is sufficient to factorN in polynomial
time even when r is not necessarily extremely small,
when β < α and α+ 2γ < 1/2.

We now prove this claim. The volume of the lattice
is vol(L) = xN1+2α+2γ . By the Gaussian heuristic,
we estimate that the length of the shortest vector is
≈
√
xN1/2+α+γ . Let d denote the distance between

(r,−k)G and (0, A2). We have

d2 = r2x2N4α+4γ + (rA1 − kN)2,

which can be upper-bounded by

d2 ≤ x2N4α+6γ +N1+2α+2γ .

By hypothesis, N2α+4γ/N quickly goes to zero when
N is large. Therefore, for large enough N , we have
d2 ≤ 2N1+2α+2γ , regardless of the value of x. In fact,
x = logN , or even x = Nε (for a small enough ε) would
also work.

Thus, for a sufficiently large x and for N large
enough, the distance between (0, A2) and (r,−k)G
should always be smaller than the length of the shortest
vector of the lattice, so that (r,−k)G should be the
lattice vector closest to (0, A2).
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In the range of parameters β < α and α+ 2γ < 1/2,
as in the previous section, this shows that the modified
MCExp protocol does not achieve (τ, ε)-exponent hiding
nor (τ, ζ)-verifiability for τ = poly(λ), ε = 1 − negl(λ)
and ζ = negl(λ) (assuming the Gaussian heuristic for
the family of Euclidean lattice L).This attack was tested
successfully in practice with a modulus N of 2048 bits,
k1 and k2 of 496 bits, s of 480 bits and r of 256 bits ;
it takes 30ms.

4.5. Attack when s is Somewhat Large using
Coppersmith’s Methods

The two previous attacks require α ≤ 1
2 . In this section,

we lift this restriction, and focus on the case where r
is still very small (smaller than 11 as in the original
protocol) but s is not. In this case, it is still possible
to do an exhaustive search on r and thus we assume it
to be known. We also assume that α > 1/2 and that
β < α.

We show that it is heuristically possible, for a
range of values of the parameters α and β, to recover
in polynomial-time the factorization of N by finding
small roots of a polynomial in three variable using the
technique exposed in Section 3.2.

In this setting, bB/Nc is no longer equal to k or
k − 1, but k∗ = bB/Nc is still a good approximation
of k. Hence, we can rewrite k as k = k∗ + k′. The new
parameters k∗ and k′ are respectively upper-bounded
by N1/2 and Nα−1/2. Equation (3) is equivalent to
f(s, t, k′) = 0, where f is the tri-variate polynomial:

f(x, y, z) = N · (k∗ + y)− z · (k∗ + y) + r · x−B,
= N · k∗ −B + r · x− k∗ · z +Ny − k∗ · yz.

We want to find a small root of f , expecting it to be
(s, k′, t). To make Coppersmith’s method work, we first
need to compute the bounds: X ≈ Nβ , Y ≈ Nα−1/2,
Z ≈ N1/2, and finally, W ≈ N1/2+α. By Theorem 3.2,
finding the small root in polynomial time is feasible for
parameters α, β such that there exists τ ≥ 0 satisfying:

X2+3τY 3+6τ+3τ2

Z3+3τ < W 2+3τ−ε. (5)

The optimal τ (the one which will gives us the largest
ranges for α and β) is τ = −α+β−12α−1 . We are thus led to
distinguish two cases:

• if α + β > 1, then τ is negative and the optimal
value of τ is zero. In this case, (5) becomes
α(ε+ 1) + 2β < 1− ε/2 and no pair (α, β) satisfies
both conditions;

• if α+ β ≤ 1, then τ is positive and substituting it
into (5) yields

4α2ε+ α2 + 2αβ − 3β2 + 2β − ε− 1 < 0.

This is true when

3β < α+ 1−
√

4α2(1 + 3ε) + 2α− (2 + 3ε).

β

α

0 1

1/2

1/2

FIGURE 5. Attacks based on Coppersmith methods
with small r. In blue the parameters that can be broken
by the “Euclidean division” of Section 4.3, in red the
parameters broken by the attack based on finding small
roots of Section 4.5. The black dots mean that the attack
has been carried out in practice when N is 2048-bit long.
In the hatched area, the attack is known to be practically
feasible for this particular size of N .

It must be noted that this bound is exactly the same
bound as in the Joye-Lepoint attack against RSA
with partial key-exposure [32] (see Section 4.7). For
any given pair (α, β), there is a threshold W0 such
that the attack (heuristically) works for all W > W0

(assuming that the generated polynomials define an
algebraic variety of dimension 0). In practice, this
means that it only works for “large enough” N . As in
the previous sections, this is sufficient to (heuristically)
break the exponent-hiding and verifiability properties
of the modified MCExp protocol in polynomial-time for
this range of parameters.

Experiments. Several factors make the practical
assessment of the attack difficult. First of all, the above
analysis implies that, given α and β, the attack only
works for large enough N . It is not easy to determine
what ranges of α, β are actually breakable for practical
sizes of N .

We thus decided to fix the size of N to a practical
value (2048 bits) and ran a series of experiments.
The actual algorithm of [25] uses two integer
parameters which are determined asymptotically in its
analysis (summarized in Theorem 3.2). Running the
algorithm in practice requires finding actual values
of those parameters.It is fairly easy and fast to find
automatically pairs such that finding the small root is
(heuristically) guaranteed to succeed (for instance by
exhaustive search over a small space). If N is too small,
then no such pair may exist.

In Figure 5, the dashed line show the largest β for
which parameters are known to exist and make the
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attack work with this particular size of N . This is
visibly well below the bound “for large enough N”.

In practice, the algorithms performs better than what
the theory predicts (it even succeeds for values of α, β
outside of the promised area). This phenomenon is
documented [35]. Smaller parameters may work, and
manually tuning them could lead to better execution
times or may allow the attack to work for a smaller
N . This process is nevertheless error-prone and time-
consuming.

We have tested the attack with k1, k2 of 1500 bits
and s of 256 bits. It succeeded with m = 4, t = 2, and
spent 64h LLL-reducing a lattice of dimension 133 with
14-Kbit coefficients.

4.6. Attack when r is Somewhat Large using
Coppersmith’s Methods

We finally consider the setting where one increases the
range of the multiplicative mask r while s is kept small
(less than 11).

We consider the polynomial:

f(x, y, z) = A2 + x · (A1 − s)− yN − yz

It admits a small root (r, k, t), that we will find using
the same method as before.

We first need to compute the bounds: X ≈ Nγ ,
Y ≈ Nα+γ , Z ≈ N1/2 and finally, W ≈ N1+α+γ . By
Theorem 3.2, we are searching for τ ≥ 0 such that

X1+3τY 2+3τZ1+3τ+3τ2

< W 1+3τ−ε. (6)

Hence, we are searching for parameters α, γ, τ ≥ 0 such
that:

Nγ(1+3τ)N (α+γ)(2+3τ)N (1+3τ+3τ2)/2 < N (1+α+γ)(1+3τ).

The optimal τ is τ = 1/2 − γ, and with this value
inequality (6) become

α(1 + ε) <

(
7

8
− ε
)
−
(

7

2
+ ε

)
γ +

3

2
γ2

Once again, once α and γ are given such that
this constraint is satisfied for some ε, the attack
will (heuristically) only work for large enough N .
Again, this attack is sufficient to (heuristically) break
the exponent-hiding and verifiability properties of the
modified MCExp protocol in polynomial-time for this
range of parameters.

Experiments. We tested the attack in practice (see
Figure 6). It requires larger values of n to actually
work than the previous one. When N is 2048-bit long,
the attack worked with k1, k2 of 1152 bits and r of 64
bits, using m = 4, t = 2. It spent 3900s LLL-reducing a
lattice of dimension 98 with 19-Kbit coefficients.

γ

α

0 1

1/2

FIGURE 6. Attacks based on Coppersmith’s methods.
In blue, the parameters that can be attacked with the
linearization attack of Section 4.4. In red, the parameters
that can be attacked with the attack in this section. The
black dots mean that the attack has been carried out in
practice when N is 2048-bit long. In the hatched area, the
attack is known to be practically feasible for this particular
size of N .

4.7. Comparison With Known Attacks Against
Server-Aided RSA Protocol with Additive
Splitting

In the special case where the delegated exponentiation
is an RSA signature (or an RSA decryption) with a
secret exponent d, additional knowledge is available to
the adversary, namely the fact that ed ≡ 1 mod ϕ(N)
for an exponent e which is usually part of the client’s
public key. In this case, the MCExp protocol can be seen
as a special case of the server-aided RSA protocol with
additive splitting (by just focusing on A1 and ignoring
A2).

Both protocol reveal a “blinded” version of the secret
key. Mefenza and Vergnaud [15] pointed out that the
best known attack on RSA with partial key exposure
due to Joye and Lepoint [32] can be used to attack the
protocol, by extracting the secret exponent from A1.

Theorem 4.1 (Joye-Lepoint attack). There exists a
(heuristic) polynomial-time passive adversary against
the server-aided protocol with additive splitting that can
recover the client secret d (for sufficiently large RSA
modulus) from the observation of a single delegation,
provided that:

β <

{
α+ δ for 0 < δ + α < 1/2
δ+α+1−

√
4(δ+α)2+2(δ+α)−2

3 for 1/2 < δ + α < 1

The size of the public exponent e intervenes in the
complexity of the Joye-Lepoint attack, while it plays no
role in our case. For instance, the Joye-Lepoint attack
could be completely prevented by choosing a random
e modulo ϕ(N). The MCExp protocol thus introduces
additional weaknesses compared to the simple server-
aided protocol with additive splitting.

With a small public exponent, the complexity of the
Joye-Lepoint attack is essentially the same as that of
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the attack with small r of Section 4.5 — which is not
surprising since it essentially solves the same problem.
However, the Joye-Lepoint attack is not sensitive to the
value of r, and thus could potentially break parameters
that are out of the reach of all our attacks, such as
α = 3/4, β = γ = 1/8.

5. ATTACKS AGAINST MCEXP AND MEXP-
SOS WITH SEVERAL DELEGATIONS

In the previous section, we presented several attacks
against the modified MCExp protocol using a single run
of the protocol. They considerably reduce the range of
parameters usable to obtain an efficient scheme secure
in this limited setting. In this section, we present more
devastating attacks in the case where the adversary
is able to observe more than one exponentiation
delegation (with independent random decomposition).

To prevent the attacks described in this section, a
client can store the random decomposition used for each
exponent or generate it as a pseudo-random function
of the exponent. However, this approach increases the
computational or memory complexity of the limited
device and may not be usable in practice. Moreover,
to counter active attacks, Pfitzmann and Waidner [36]
suggested to renew the decomposition of the secret
key. Renewing the random masks is also interesting to
prevent side-channel attacks which are a major threat
against implementations of cryptographic algorithms
(especially on computationally limited devices).

The method is described for the server-aided RSA
with additive splitting and we show that it applies to
the MCExp and MExpSOS protocols.

5.1. Attack against MCExp with small r using
Two Delegations

We first present another simple attack which applies
when r is small enough to be guessed by the adversary
and the client delegates two exponentiations for the
same exponent a. This is for instance the case
if the client performs two RSA signatures (even if
the adversary does not know the associated public
exponent).

In this setting, the adversary can recover the
factorization of N in polynomial time, regardless of
the size of s. As in the previous section, this
approach breaks the exponent-hiding security notion
of MCExp (with two runs in the random experiment
Expeh(A, C, λ)) for τ(λ) = poly(λ) and ε(λ) = 1 and its
strong-verifiability (using the knowledge acquired after
two sessions to obtain the factorization of N and the
random mask r used in the second session, the adversary
is able to make the client output an incorrect value).

We suppose that the adversary can obtain two

delegations with the same a. We have

A1 = a− s+ k1ϕ(N)

A2 = ra+ k2ϕ(N)

A′1 = a− s′ + k′1ϕ(N)

A′2 = r′a+ k′2ϕ(N)

We assume that we know r,r′ and the order of
A1, A2 and A′1, A

′
2 (which corresponds to an exhaustive

research over only 400 possibilities) then we can
compute r′A2 − rA′2 = (r′k2 − rk′2)ϕ(N) and run
Rabin’s algorithm using this multiple of ϕ(N) (as in
Section 4.1).

5.2. Attack against Server-Aided RSA with
Additive Splitting

We present a direct application of the approximate
common divisor algorithm described in Section 3.1 to
attack the server-aided protocol with additive splitting
when the adversary is allowed to observe t ≥ 2 different
executions of the protocol.

The adversary observes a sequence of t transcripts
Ai ← d−si+ki ·ϕ(N) for i ∈ {0, . . . , t−1}, where each
si and each ki are chosen independently at random in
their range. For all i ∈ {1, . . . , t−1}, we simply compute
Bi = Ai − A0 (which cancels the “large” unknown d
term), and we obtain

Bi = (qi − q0)ϕ(N) + (ri − r0)

for i ∈ {1, . . . , t − 1}. This is exactly an instance
of the approximate common divisor problem, and the
algorithm of Section 3.1 finds the approximate common
divisor ϕ(N) in polynomial time, provided that:

1. log(N) > 2(1− β + α)/(1− β)2,

2. t > 1 + α/(1− β).

With N of 2048 bits and s of 256 bits, the first
condition translates to α < 783.125. Observing 8α/7 +
O(1) delegations are sufficient in practice to factor the
modulus N . For instance, with α = 15, so that A is
32Kbit-long, then observing 20 delegations is sufficient.
The attack reduces a dimension-20 lattice with 22-Kbit
coefficients, which takes about 15s.

Preventing the attack would require choosing α to
be so large that the first condition is not satisfied.
Using α = log(N)/2 is sufficient, but in this case the
multiple ki’s have Ω(log(N)2) bits and the client must
compute the product ki ·ϕ(n), which is more costly than
performing the exponentiation directly.

5.3. Attack against MCExp with large s and r

The previous attack can readily be generalized to attack
the modified MCExp protocol with large s and r. The
technique consists in simply forgetting the A2’s and
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using only the A1’s. The range of the r’s is therefore
irrelevant and the attack applies for all γ > 0. We
are thus in the same setting as in the server-aided
RSA protocol from Section 5.2, except that for each
delegation, we have to guess the order of A1 and A2.

We have to observe t = 1 + α/(1 − β) delegations,
and try all the 2t possible cases5 and each trial takes
polynomial time in log(N) and t. For α = O(1) and β =
O(1), this attack allows to obtain the factorization of
N in polynomial time. As in Section 4.5, this approach
breaks the exponent-hiding security notion of MCExp
(with t runs in the random experiment Expeh(A, C, λ))
for τ(λ) = poly(λ) and ε(λ) = 1 and its strong-
verifiability (using the knowledge acquired after t − 1
sessions to obtain the factorization ofN and the random
mask r used in the last session, the adversary is able to
make the client output an incorrect value).

For more concrete parameters, with α = 1 and
both r, s of 256 bits, the attack requires observing
4 delegations. There are 16 possibles orders of the
pairs (A1, A2), therefore the basic procedure has to be
repeated 16 times. This takes 0.1s in total.

For the protocol to be useful, it is necessary that β
be much smaller than 1. Making the attack difficult
in practice requires a large value of α, for instance
α = 128. This adds to the computational load of
the client. Indeed, delegating an RSA signature for a
2048-bit modulus then requires transmitting 0.5 Mbit
to the server. It also requires the server to perform a
large exponentiation (with an exponent of 262,144 bits,
we measured a running time of 0.3s on a laptop for
the exponentiation). Asymptotically, using β = 1/2
and α = Ω(log(λ)2) for instance, makes our attack
not polynomial-time (but it also makes the delegation
scheme useless in practice).

5.4. Attack against MExpSOS

Finally, we show that the previous attack can also be
applied to the protocol MExpSOS. The exponents sent
by the client to the server MExpSOS are also of the
form A1 = a − s + k1ϕ(N) and A2 = a · r + k2ϕ(N)
(in a random order) where a is the exponent of the
delegated computation. As above, we have to observe
t = 1 + α/(1 − β) delegations, and try all the 2t

possible cases in order to obtain the value ϕ(N). The
difference is that the (adversarial) server does not know
the modulus N itself but only some multiple L = `N .

If N is prime then ϕ(N) = N − 1 and the adversary
can readily obtain N . If N is an RSA modulus, an
adversary can also simply recovers N from ϕ(N) and
L. Indeed, for a random prime number ` (in the range
that makes L difficult to factor) and a random integer
x ∈ ZN , we have xϕ(N) ≡ 1 mod N by Fermat’s little

5If the four exponents used in MCExp are of the same bit-
length (see Section 2.3.2), this increase the number of possible
cases to 12t but does not change the asymptotic complexity of
our attack.

theorem whereas xϕ(N) 6= 1 mod ` with overwhelming
probability. Therefore, we have gcd(xϕ(N) − 1, L) = N
with overwhelming probability. This is sufficient to
obtain N and then factor it using the knowledge of
ϕ(N). In addition, when the adversary has obtained
N , they can simply recover the base of the delegated
exponentiation as u = U mod N . This approach
therefore breaks the instance-hiding security notion of
MExpSOS and its strong-verifiability.

We implemented this attack. For concrete
parameters, with N a 2048-bit RSA modulus, ` a 1024-
bit prime number (to prevent factoring attacks), α = 1
and both r, s of 256 bits, the attack requires observing
4 delegations. There are 16 possibles orders of the
pairs (A1, A2), therefore the basic procedure has to be
repeated 16 times. This takes 0.3s in total. As above,
to prevent this attack, using β = 1/2, the delegation
protocol requires α = Ω(log(λ)2) and this makes the
delegation scheme useless in practice.

6. CONCLUSION

We presented several lattice-based attacks on two
protocols recently proposed by Su, Zhang and Xue [1]
and Rangasamy and Kuppusamy [2]. In both papers,
the authors extended their approach and proposed
protocols for simultaneous modular exponentiations.
These extensions rely on the same masking techniques
and our cryptanalytic methods also apply to these
generalized protocols.

Chevalier et al. [13, 14] proved lower bounds on the
efficiency of generic private exponentiation outsourcing
protocols in prime order groups. These bounds
suggest that for a variable base private modular
exponentiation delegation (which is the case of interest
for RSA decryption/signature), it is probably difficult
to improve the client efficiency by more than a constant
factor. It remains open to provide more efficient
provably secure protocols and complexity lower bounds
for exponentiation protocols in groups of unknown
composite order. Another interesting problem is
to provide lower bound on the communication and
computational complexities of verifiable exponentiation
delegation.
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[19] Blömer, J. and May, A. (2005) A tool kit for finding
small roots of bivariate polynomials over the integers.
In Cramer, R. (ed.), EUROCRYPT 2005, May, LNCS,
3494, pp. 251–267. Springer, Heidelberg.

[20] Jochemsz, E. and May, A. (2006) A strategy for finding
roots of multivariate polynomials with new applications
in attacking RSA variants. In Lai, X. and Chen, K.
(eds.), ASIACRYPT 2006, December, LNCS, 4284,
pp. 267–282. Springer, Heidelberg.

[21] Herrmann, M. and May, A. (2009) Attacking power
generators using unravelled linearization: When do
we output too much? In Matsui, M. (ed.),
ASIACRYPT 2009, December, LNCS, 5912, pp. 487–
504. Springer, Heidelberg.

[22] Bauer, A., Vergnaud, D., and Zapalowicz, J.-C.
(2012) Inferring sequences produced by nonlinear
pseudorandom number generators using Coppersmith’s
methods. In Fischlin, M., Buchmann, J., and Manulis,
M. (eds.), PKC 2012, May, LNCS, 7293, pp. 609–626.
Springer, Heidelberg.

[23] May, A. and Ritzenhofen, M. (2008) Solving systems
of modular equations in one variable: How many RSA-
encrypted messages does eve need to know? In Cramer,
R. (ed.), PKC 2008, March, LNCS, 4939, pp. 37–46.
Springer, Heidelberg.

[24] May, A. and Ritzenhofen, M. (2009) Implicit factoring:
On polynomial time factoring given only an implicit
hint. In Jarecki, S. and Tsudik, G. (eds.), PKC 2009,
March, LNCS, 5443, pp. 1–14. Springer, Heidelberg.

[25] Ernst, M., Jochemsz, E., May, A., and de Weger,
B. (2005) Partial key exposure attacks on RSA
up to full size exponents. In Cramer, R. (ed.),
EUROCRYPT 2005, May, LNCS, 3494, pp. 371–386.
Springer, Heidelberg.

[26] Lagarias, J. C. (1982) The computational complexity
of simultaneous diophantine approximation problems.
23rd FOCS, November, pp. 32–39. IEEE Computer
Society Press.

[27] Howgrave-Graham, N. (2001) Approximate integer
common divisors. Cryptography and Lattices, Interna-
tional Conference, CaLC 2001, Providence, RI, USA,
March 29-30, 2001, Revised Papers, pp. 51–66.

The Computer Journal, Vol. ??, No. ??, ????



16 Ch. Bouillaguet, F. Martinez and D. Vergnaud

[28] van Dijk, M., Gentry, C., Halevi, S., and Vaikun-
tanathan, V. (2010) Fully homomorphic encryption
over the integers. In Gilbert, H. (ed.), EURO-
CRYPT 2010, May / June, LNCS, 6110, pp. 24–43.
Springer, Heidelberg.

[29] Rabin, M. O. (1979) Digitalized signatures and public-
key functions as intractable as factorization. Technical
report. Massachusetts Institute of Technology, USA.

[30] Kerckhoffs, A. (1883) La cryptographie militaire.
Journal des sciences militaires, 9, 5–83.

[31] Rivest, R. L., Shamir, A., and Adleman, L. M. (1978) A
method for obtaining digital signatures and public-key
cryptosystems. Communications of the Association for
Computing Machinery, 21, 120–126.

[32] Joye, M. and Lepoint, T. (2012) Partial key exposure on
RSA with private exponets larger than n. ISPEC 2012,
Lecture Notes in Computer Science, 7232. Springer.

[33] Lenstra, A. K., Lenstra, H. W. J., and Lovász, L. (1982)

Factoring polynomials with rational coefficients. Math.
Ann., 261, 515–534.

[34] Nguyen, P. Q. and Vallée, B. (2009) The LLL
Algorithm: Survey and Applications, 1st edition.
Springer Publishing Company, Incorporated.

[35] Herrmann, M. and May, A. (2010) Maximizing small
root bounds by linearization and applications to
small secret exponent RSA. In Nguyen, P. Q. and
Pointcheval, D. (eds.), Public Key Cryptography - PKC
2010, 13th International Conference on Practice and
Theory in Public Key Cryptography, Paris, France,
May 26-28, 2010. Proceedings, Lecture Notes in
Computer Science, 6056, pp. 53–69. Springer.

[36] Pfitzmann, B. and Waidner, M. (1993) Attacks on
protocols for server-aided RSA computation. In
Rueppel, R. A. (ed.), EUROCRYPT’92, May, LNCS,
658, pp. 153–162. Springer, Heidelberg.

The Computer Journal, Vol. ??, No. ??, ????


