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Cryptanalysis of an Outsourced Modular
Inversion Protocol

Charles Bouillaguet

Abstract—Public-key cryptographic primitives involve mathematical operations that are computationally intensive for devices with
limited resources. A typical approach is to offload time-consuming operations from a (computationally weak) client device to an
untrusted yet computationally powerful server. Such a delegation protocol needs to achieve the privacy of the server’s inputs. Recently,
Tian, Yu, Zhang, Xue, Wang and Ren [IEEE Trans. Serv. Comput., vol. 15, no. 1, pp. 241–253, 2022] proposed a unimodular matrix
transformation technique to realize secure outsourcing of modular inversion. We present an elementary cryptanalysis of their protocol
and prove that it does not achieve the claimed security guarantees.
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1 INTRODUCTION

COmputing modular inverse is a very common opera-
tion in public-key cryptography. It is required to gen-

erate RSA key pairs, to create DSA signatures, to perform
the group operation on elliptic curves in some coordinate
systems, etc. Since the computational resources can be very
limited on certain devices, it is natural, as most of the de-
vices are online or directly connected to a powerful device,
to consider securely delegating some sensitive and costly
operations to another, untrusted but more powerful device.

The problem of outsourcing cryptographic operations
has already received a lot of attention but there has been
a recent regain of interest with the development of cloud
computing. In 2005, Hohenberger and Lysyanskaya [1] pro-
posed formal security definitions for securely outsourcing
computations from a computationally limited device, called
the client, to untrusted helpers, called the servers. Delegating
a cryptographic operation presents many risks since they
usually involve sensitive information which should not
be revealed to potential adversaries. Moreover, since the
servers are not fully trusted, a delegation protocol should
enable clients to verify the correctness of the result returned
by the server with high probability.

A delegation protocol must therefore usually meet two
security objectives: privacy —the actual computation that
the client is delegating should not be revealed to a passive
adversary— and verifiability —a malicious server should
not be able to make the client accept an invalid value as
the result of the delegated computation. Obviously, to be
of practical interest, these delegation protocols must have
a computational cost for the client lower than that of the
delegated computation.

In a modular inversion delegation protocol, the client has
two (potentially large) integers a and n and uses the help
of a server to compute a−1 mod n. For instance, in order
to generate an RSA key pair, it is common to compute the
secret exponent as d ← e−1 mod (p− 1)(q − 1). The public
exponent e usually has a fixed value (very often e = 65537).
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The result d of the computation is the secret key. If either d
or (p− 1)(q − 1) leaks, then the resulting key pair offers no
security at all. It is common to manipulate numbers of 2048
or even 4096 bits when generating RSA key pairs.

Protocols to delegate the computation of a modular
inverse have been proposed by Su, Yu, Tian, Zhang and
Hao [2] and more recently by Tian, Yu, Zhang, Xue, Wang
and Ren [3]. The former requires the modulus to be the
product of only two prime numbers (i.e. n = pq); this
factorization must be known to the client; the delegation
protocol requires two non-colluding servers to be secure.
The latter protocol lift these restrictions and is claimed to
be secure for arbitrary values of n using a single untrusted
server.

The protocol proposed in [3] is simple and the authors
claim that it is secure (privacy and verifiability). We show
that a passive adversary can easily reconstruct the content of
the delegated computation. We provide a complete python
program implementing the attack. It runs almost as fast as
actually performing the modular inversion. The protocol is
thus broken beyond repair. As a final nail in its coffin, we
show how the client could actually perform the modular
inversion by itself and faster than by running the proposed
delegation protocol, in some relevant use cases.

2 DESCRIPTION OF THE PROTOCOL

We briefly describe the protocol proposed in [3]. Let k be a
security parameter. It is assumed that the security offered
by the protocol increases with k (and its efficiency decreases
with k). The client has two relatively prime ℓ-bit numbers
a, n. If used in the context of generating RSA key pairs, then
ℓ ≥ 2000. In order to compute a−1 mod n, the client:

• Generates two random coprime k-bit integers x and
y, then runs the extended Euclidean algorithm to
compute (z, t) satisfying the Bezout relation xz −
yt = 1. This preprocessing stage could be done in
advance, before the values of a and n are known, but
it has to be repeated for each new modular inversion.
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• Computes (
a′

n′

)
=

(
x z
y t

)(
a
n

)
.

Sends (a′, n′) to the server.

The server:

• Runs the extended Euclidean algorithm to computes
the Bezout relation ua′ + vn′ = 1. Sends back (u, v)
to the client.

Finally the client:

• Checks that ua′ + vn′ = 1. If it is the case, it emits
(ux+ vy) mod n. Otherwise, it emits ⊥.

The protocol is clearly correct: the client always emits
either a−1 mod n or ⊥, and it always return the modular
inverse when the server runs the protocol correctly.

Theorem 5 in [3] asserts that using the outsourcing
protocol enables the client to compute modular inverses
with O (ℓ) less operations than directly using the fastest
know algorithm.

Because the client and the server communicate over a
presumably insecure channel, the messages they exchange
are assumed to be public. Yet it is intended that the values
manipulated by the client (here a and n) remain private. The
authors of [3] claim that the protocol satisfies the notion of
input/output privacy. More precisely, theorem 4 in [3] states
that any probabilistic algorithm with polynomial running
time (in k) that receives the server input (a′ and n′) cannot
emit the client values (a and n), except with negligible
probability (in k). In other terms, when the “security param-
eter” k (the bit size of the blinding factors x, y, z, t) increase
linearly, then the performance of any adversary against the
privacy of the protocol should collapse. The authors suggest
k ≈ 80, because exhaustively searching 280 values seems
practically infeasible.

3 COMPLEXITY ANALYSIS

The authors of [3] justify the proposed delegation protocol
by the fact that it would allow the client to do asymptotically
less operations than directly computing modular inverses.
In this section, we show that this is incorrect, and that using
the protocol can only yield a constant acceleration in the
most favorable case. This contradicts theorem 5 in [3] and
shows that its proof is flawed.

In [3], the authors use only classical “schoolbook” algo-
rithms for arithmetic operations. For the sake of comparison,
we will do the same. Let x (resp. y) denote an n-bit integer
(resp. m-bit). There exist two constants λ, µ such that:

• Computing x + y or x − y requires less than λ(n +
m+ µ) operations.

• Computing xy requires less than λ(n + µ)(m + µ)
operations.

• If y is the quotient of the Euclidean division of
some number by x, then performing the division (i.e.
computing the quotient and the remainder) requires
less than λ(n+ µ)(m+ µ) operations.

Computing inverse modulo arbitrary numbers can be
done with the extended Euclidean algorithm. The heart of

the problem is that it is incorrectly claimed in [3] that the
extended Euclidean algorithm requires O

(
ℓ3
)

operations
when executed on two ℓ-bit numbers. It is well-known that
its running time is in fact O

(
ℓ2
)
, even using schoolbook

algorithms for arithmetic operations. In fact, we have the
following

Theorem 1. The extended Euclidean algorithm, when applied to
0 ≤ a < n terminates after O (len(a) · len(n)) bit operations,
even using schoolbook algorithm to implement multi-precision
arithmetic operations. It returns (g, u, v) where g = ua + vn,
g is the greatest common divisor of a and n, |u| ≤ n and |v| ≤ a.

A proof appears for instance in [4, §4.2]. This theorem
can be improved, as the asymptotic complexity of modular
inversion is actually subquadratic. The first quasilinear algo-
rithm for GCD computations (and hence modular inversion)
was given by Knuth in 1971 [5]. See also [6], [7].

Theorem 1 result indicates that computing a a−1 mod n
is only a constant factor more expensive than computing an
using schoolbook multiplication. Both a theoretical analysis
of the number of operations and empirical experiments
with the GNU Multi-Precision library (comparing the relative
speed of the mpz_mul and the mpz_invert functions)
suggest that modular inversion is about 20 times slower
than multiplication.

Computing the inverse of a modulo an ℓ-bit modulus n
thus requires O

(
ℓ2
)

operations in general. In the protocol,
the integers u and v have length ℓ+k. The protocol requires
the client to compute ua′ and vn′, in other terms to multiply
(k+ℓ)-bit numbers, which costsO

(
(k + ℓ)2

)
. It follows that

the protocol can only save a constant fraction of the work in
the best case.

We wrote a simple-minded C implementation of the
protocol using the GMP library (just like the authors of [3]),
and we benchmarked it with ℓ = 2048 and k = 128. We find
that inverting a random 2048-bit a modulo another random
2048-bit number n requires 9.7µs on the author’s laptop.
The protocol takes total time 12.5µs, of which 11.9µs are
done by the server and 1.6µs are done by the client. Using
the protocol thus saves a factor of about 6 in computation
time for the client, in this particular case. This is in line with
the experimental results presented in [3].

The authors of [3] explicitly discuss the relevant setting
of delegating the inversion that takes place when generating
RSA key pairs. In this case, it is fairly common to com-
pute the inverse of a small number (typically a = 65537).
Theorem 1 shows that computing the inverse is even more
efficient in this case, as it only needs O (ℓ) operations. Run-
ning the protocol is then asymptotically more expensive for
the client than directly computing the modular inverse. Our
practical experiments indicate that the inversion requires
0.29µs, while the protocol takes 5.0µs, of which 1.5µs are
done by the client. Using the protocol is then 5 times less
efficient than doing the computation directly.

In all cases, the asymptotic benefit of using the protocol
is at most O (1) and not O (ℓ) as advertised in [3].

4 A POLYNOMIAL-TIME ATTACK ON PRIVACY

This section describes a deterministic polynomial-time al-
gorithm (the “attack”) that recovers the client secrets (a, n)
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from the server input (a′, n′). As such, it invalidates the
security claims made in [3], and shows that the proof of
theorem 4 in [3] is flawed. The attack is very practical, easy
to implement and runs in no measurable time.

The problem in the security proof lies in the (erroneous)
claim that (a′, n′) can be seen as the “one-time pad encryp-
tion” of (a, n) with key (x, y, z, t), from which the authors
deduce that “consequently, no information will be leaked to the
adversary”. This reasoning is incorrect, if only because it is
well-known that perfect secrecy requires the key to be at
least as long as the plaintext, a condition which is clearly
not satisfied here.

Indeed, our attack works under the condition that k ≤ ℓ,
in other terms that the “blinding factors” x, y, z, t are smaller
than the modulus n used when computing the inverse
of a. If this condition did not hold, then the “preprocessing
stage” where the client computes (z, t) using the extended
Euclidean algorithm would be more costly than directly
inverting a modulo n. As such, the protocol would be
pointless.

The attack recovers the blinding factors x, y, z, t from
the public input (a′, n′). This is enough to recover a and n
because of the relation:(

a
n

)
=

(
t −z
−y x

)(
a′

n′

)
. (1)

Equation (1) holds because xt − yz = 1 (the matrix is uni-
modular, and thus invertible over Z). Consider the following
integer linear program:{

|γa′ + δn′| ≤ 2ℓ

|γ|, |δ| ≤ 2k
(2)

It follows from (1) that (t,−z) and (−y, x) are both
solutions of (2). In section 5, we will prove the following

Theorem 2. If k ≤ ℓ, the linear program (2) admits at
most 24 · 2ℓ+k/n′ + 1 solutions. Computing them requires
O
(
ℓ2
(
1 + 2ℓ+k/n′)) bit operations.

Because n′ is expected to be very close to 2ℓ+k, we thus
expect the number of solutions of (2) to be quite small. Given
this result, an adversary could run the following procedure
to recover the secrets:

• Determine the set Ω of all solutions of (2).
• For each pair (α, β), (γ, δ) of solutions in Ω, set a ←

αa′ + βn′ and n ← γa′ + δn′; if |αδ − βγ| = 1 and
0 ≤ a < n, then output (a, n).

Because (t,−z) and (−y, x) are both solutions of (2),
this algorithms necessarily outputs (a, n). It may produce
several other outputs; it is left to an external mechanism to
determine which output is really the good one. This in turn
depends on the context in which the inversion delegation
takes place. Once Ω has been determined, the complexity of
this procedure is that of performing less than 576·(2ℓ+k/n′)2

arithmetic operations on (ℓ+k)-bit numbers. This dominates
the total cost of the attack. It is also an upper bound on the
number of solutions that can be emitted.

Note that up to a constant factor, the cost of the attack
is the same as the cost of performing the legitimate opera-
tions using classical “schoolbook” algorithms for arithmetic
operations.

5 EUCLIDEAN LATTICES AND LINEAR PROGRAMS

This section proves theorem 2 with a reasoning based on Eu-
clidean lattices. Our presentation is entirely self-contained,
yet some familiarity with the basic concepts of the geometry
of numbers cannot hurt. The interested reader will find
some background in [8].

The approach we use is not very original. The connection
between Euclidean lattice basis reduction and linear integer
programming was observed as early as 1981 and used to
obtain important complexity results [9]. See also [10].

5.1 Preliminaries

Consider the Euclidean lattice L spanned by the rows of

M =

(
a′ 2ℓ−k 0
n′ 0 2ℓ−k

)
.

In other terms, L is the subset of R3 formed by all linear
combinations with integer coefficients of the two rows of
M (see fig. 1). M can be built from public information, and
therefore is known to the attacker.

These two vectors are clearly linearly independent,
therefore the linear subspace of R3 spanned by the rows
of M has dimension two. We thus say that the lattice L has
dimension two as well. Indeed, the lattice is embedded into
the plane that goes through the origin and is orthogonal to
(2ℓ−k,−a′,−n′).

The main reason for introducing Euclidean Lattices is
the following. Each solution (γ, δ) of the integer linear
program (2) corresponds to a vector

(γ, δ)M = (γa′ + δn′, 2ℓ−kγ, 2ℓ−kδ) (3)

that belongs to the lattice L. These vectors are all distinct
because the rows of M are linearly independent. Moreover,
these vectors have norm bounded by

√
3 · 2ℓ because each

coordinate is less than 2ℓ in absolute value.
This observation is useful, because the main idea that

enables us to control the number of solutions of the linear
program (2) is the following: vectors that correspond to
solutions of (2) are among the shortest ones of the lattice L,
and this lattice can only contain a limited number of short
vectors (see fig. 1). Furthermore, they are easy to find.

Let us now get into the details. If U is a unimodular
matrix, then the rows of UM span the same Euclidean lattice
as that of M (the converse is true). This implies that the
lattice L is also spanned by the rows of

M ′ =

(
t −z
−y x

)
M =

(
a t2ℓ−k −z2ℓ−k

n −y2ℓ−k x2ℓ−k

)
.

Note that M ′ contains the secret information and is
therefore unknown to the attacker. The rows of M ′ are
linearly independent (because those of M are). As argued
above, the norm of each of these two new basis vectors is
less than

√
3 · 2ℓ.

A Euclidean Lattice is a discrete structure. As such, it
has a non-zero vector of minimal norm, that we call the
“shortest vector” of the lattice (see fig. 1). There may be
several non-zero vectors of minimum norm, but we just pick
one arbitrarily. If r is the shortest vector of L, then let s
denote a shortest non-zero vector that is not colinear with
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Fig. 1. A Euclidean lattice with the two shortest vectors. There is a limited
supply of vectors of bounded norm (inside the red circle).

1: function LAGRANGEREDUCE(u,v)
2: repeat
3: q ←

⌊
u · v / ∥u∥2

⌉
4: w← v − qu
5: v← u
6: u← w
7: until ∥u∥ ≥ ∥v∥
8: return (v,u)

Fig. 2. Lagrange’s lattice reduction algorithm (cubic version).

r (again, there may be several). This s is called the “second
shortest vector” of L.

A two-dimensional lattice always admits a basis com-
posed of the two shortest vectors. This result is well-known
but non-trivial (it is not true in dimension 5 or greater). More
precisely, we have the well-known

Theorem 3. Let (u,v) denote two vectors with integer coordi-
nates, and letM denote the Euclidean lattice spanned by (u,v).

Lagrange’s reduction algorithm (fig. 2) computes another basis
(r, s) of M such that r (resp. s) is the shortest (resp. second
shortest) vector of the lattice.

The running time of the algorithm is quadratic in the bit
length of the input vectors.

The interested reader will find a proof in appendix A.
Lagrange’s algorithm first appeared in [11].

It follows from theorem 3 and the bounds on the norms
of the rows of M ′ that the lattice L admits a minimal basis
(r, s) where

∥r∥ ≤ ∥s∥ ≤
√
3 · 2ℓ. (4)

In addition, obtaining r and s from the input is compu-
tationally easy for the server: it just has to run Lagrange’s
algorithm, which takes time O

(
ℓ2
)
.

Let us next introduce another property of Euclidean
lattices. The Gram matrix of the two vectors u and v is

MM t =

(
∥u∥2 u · v
u · v ∥v∥2

)

The volume of a lattice spanned by the rows of a matrix M
is the quantity given by

V =
√
detMM t =

√
∥u∥2 · ∥v∥2 − (u · v)2 (5)

It does not depend on the choice of a particular basis matrix:
if G = UM , then

detGGt = detUMM tU t = (detU)(detMM t)(detU t),

and since detU = ±1, we find that detGGt = detMM t.
The volume is thus an intrinsic property of the lattice, and
it is easy to compute given any basis. In the case of our
lattice L, we find that

V = 2ℓ−k
√
22ℓ−2k + a′2 + n′2. (6)

It follows from (5) that V ≤ ∥u∥ · ∥v∥ (equality only
holds if the two vectors are orthogonal). Combined with (4),
this provides the following lower-bound on the length of
the shortest vector

∥r∥ ≥ V√
3 · 2ℓ

. (7)

The vectors of a lattice basis need not be orthogonal.
Therefore, it makes sense to compute the Gram-Schmidt
orthogonalization of the input basis matrix (see fig. 3). Let
r⋆ ← r and s⋆ ← s− µr with

µ =
r · s
∥r∥2

.

Note that we have (
r
s

)
=

(
1 0
µ 1

)(
r⋆

s⋆

)
(8)

The two vectors r⋆ and s⋆ are orthogonal. This, com-
bined with (5) implies that

V = ∥r⋆∥ · ∥s⋆∥ . (9)

However, s⋆ has rational entries, as opposed to s that has
integer entries.

5.2 Enumerating Short Vectors
We now describe a procedure that enumerates all the lattice
points of norm less than some given bound B. If r is the
shortest vector of the lattice, then it is clear that there are
exactly 2B/∥r∥+1 multiples of r inside the disk of radius B.
Establishing upper bounds on the number of enumerated
points will therefore necessarily require a lower-bound on
the length of the shortest vector of the lattice, which is why
we derived (7) in the first place.

Let x ∈ L be such that ∥x∥ ≤ B. Because (r, s) is a
lattice basis, we can write x = x1r + x2s. Using (8), this
becomes x = (x1 + µx2)r

⋆ + x2s
⋆. The upper-bound on the

norm of x then translates into bounds on the coefficients x1

and x2. Indeed, because r⋆ and s⋆ are orthogonal, we find
that

∥x∥2 = x · x = (x1 + µx2)
2 ∥r⋆∥2 + x2

2 ∥s⋆∥2 ≤ B2 (10)

All the terms in the left-hand side of (10) are positive.
Then using (9) we find that

|x2| ≤
B

∥s⋆∥
=

B ∥r⋆∥
V

=
B ∥r∥
V

(11)
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r
=
r
⋆

s
s ⋆

Fig. 3. (r⋆, s⋆) is the Gram-Schmidt orthogonalization of the lattice basis (r, s). The enumeration procedure is illustrated: in order to enumerate
all lattice points inside the red circle, it enumerates all the green points that are inside the square. The sides of the square are parallel to the
orthogonalized basis. The circle is tangent to all sides.

This shows that x2 is confined to live in a (hopefully) small
interval that can be searched exhaustively. We also find by
the same reasoning that

|x1 + µx2| ≤
B

∥r⋆∥
=

B

∥r∥
(12)

This limits the possible values of x1.
The culmination of all this development about Euclidean

lattices is the algorithm shown in figure 4 that enumerate
short vectors in a two-dimensional lattice. A geometric
interpretation is in order (see fig. 3): in order to find all the
lattice points inside the disk of radius B, the algorithm in
fact enumerates all points inside a square of size 2B that
contains the disk.

Combining (12) and (11) shows that the number of
iterations of the innermost loop is upper-bounded by(
2
B ∥r∥
V

+ 1

)(
2
B

∥r∥
+ 1

)
=

4B2

V
+ 2

B ∥r∥
V

+ 2
B

∥r∥
+ 1

This count again admits a simple geometric interpretation.
Each lattice point “occupies” an area which is equal to the
volume of the lattice, so that the number of lattice points in

1: procedure ENUMERATE(u,v, B)
2: (r, s)← LAGRANGEREDUCE(u,v)
3: µ← r · s / ∥r∥2
4: a← B · ∥r∥ / V
5: b← B / ∥r∥
6: for −⌊a⌋ ≤ x2 ≤ ⌊a⌋ do
7: for −⌊b− µx2⌋ ≤ x1 ≤ ⌊b− µx2⌋ do
8: x← x1r+ x2s
9: if ∥x∥ ≤ B then

10: Emit x

Fig. 4. Enumeration procedure that emits all vectors of norm less than
B in the lattice spanned by the two vectors (u,v).

the square is essentially the surface of the box divided by
the volume of the lattice (4B2/V ). In addition, it is clear
that the disk necessarily contains 2B/∥r∥ + 1 multiples
of r (including the origin). Lastly, the box also contains
2B∥r∥/V + 1 multiples of s, although this is less obvious.
In addition, they may not all lie inside the disk.

The naive enumeration algorithm given in figure 4 has
long been known. It appears (under a different presentation)
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in the 1969 edition of The Art of Computer Programming [12,
§3.3.4].

5.3 Enumerating Solution of (2)

To find all the solutions of the linear program (2), we set B =√
3 · 2ℓ and we use the algorithm of figure 4 to enumerate

all vectors of norm less than B in the lattice L. Note that all
lattice points are written (γa′+δn′, γ·2ℓ−k, δ2ℓ−k). From any
lattice point, we can extract (γ, δ) and check if these values
satisfy (2). Indeed, all solutions of (2) yield lattice points of
norm less than B, but they may also be other “spurious”
lattice points inside the disk of radius B.

Thanks to (6), we lower-bound the volume by V ≥
2ℓ−kn′. In addition, using (4) and (7) we get that the number
of enumerated lattice points is less than

24
2ℓ+k

n′ + 1.

This is also an upper bound on number of solutions of (2).
Processing each lattice point requires a constant number

of operations on vectors whose norm is less than
√
2·B. As a

consequence, using only classical (“schoolbook”) algorithms
to implement the arithmetic operations, the bit complexity
of the procedure is

O
(
ℓ2 +

2ℓ+k

n′ ℓ2
)
.

This proves theorem 2.

6 IMPLEMENTATION OF THE ATTACK

This section describes a pure Python implementation of
the attack described in the previous section. It is entirely
self-contained and does not use any external library. It
works very well in practice and recovers the secrets in no
measurable time.

One notably useful feature of Python is that it supports
arbitrarily large integers out of the box. This makes it easy to
implement functions that process cryptographic-size values
with, say, 2048 bits.

We first need some very usual routines to deal with vec-
tors. When given integer vectors and integer scalars, these
functions only perform integer arithmetic and therefore can
deal with arbitrarily large numbers.

def dot(u, v):
"""
Return the dot product of the vectors u and v
"""
r = 0
for (x, y) in zip(u, v):

r += x * y
return r

def sqnorm(u):
"""
Return the square of the norm of the vector u
"""
return dot(u, u)

def aupbv(a, u, b, v):
"""
Given two vectors (u, v) and two scalars (a, b),
return the vector a*u + b*v

"""
z = []
for (x, y) in zip(u, v):

z.append(a * x + b * y)
return z

Computing the norm of a vector requires a bit more care,
as the sqrt (square root) function in Python only operates
on double-precision floating point values. The largest value
that can be represented in this way is 21023×(1+(1−2−52)),
and this is not enough for our purpose. Therefore, we cannot
compute the norm of a vector u by just computing

√
u · u, as

both the argument and the result of the square root would
be too large. To circumvent this problem, we properly scale
our vectors to reduce the magnitude of their entries. Most
vectors we use have norm about 2ℓ, so we just divide each
coefficient by 2ℓ (this divides the norm by 2ℓ). To keep a
good precision, we use rational arithmetic, as provided by
the fractions module of Python’s standard library. When
computing norms, fractions are automatically converted to
the floating-point number that approximate them best.

def norm(u):
return sqrt(dot(u, u))

def scale(s, v):
"""
Return 1/s * v, where s is a (potentially large)
scalar and v is a vector. This yields a vector
of rationals
"""
f = fractions.Fraction(1, s)
return [f * x for x in v]

Computing the shortest vectors of the lattice is done by
Lagrange’s algorithm. Given integer vectors, it only perform
integer arithmetic. In order to compare norms, it is enough
to compare their square (this avoids computing square
roots). In other terms, We check whether ∥u∥2 ≤ ∥v∥2
instead of ∥u∥ ≤ ∥v∥. This function implements the cubic
algorithm of figure 2.

def lagrange_reduction(u, v):
"""
Given a basis (u, v) of a 2-dimensional lattice,
return the 2 shortest vectors.
"""
if sqnorm(u) < sqnorm(v):

tmp = u
u = v
v = tmp

while True:
f = fractions.Fraction(dot(u, v), dot(v, v))
q = round(f)
r = aupbv(1, u, -q, v)
u = v
v = r
if sqnorm(u) <= sqnorm(v):

return (u, v)

We now come to the meat of the attack, namely the
procedure that enumerate all shorts vectors in the lattice.
This requires several norm computations, and vectors are
therefore scaled appropriately. The function therefore takes
as input a integer “scaling factor” N (a large integer), with
the assumption that the norms of r and s are close to N .

For instance, the volume of the lattice is close to N2, and
obtaining its value requires a square root computation. We
thus compute the scaled volume sVol which is equal to the
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actual volume divided by N2. Later on, we need the norms
of the Gram-Schmidt orthogonalized vectors ∥r⋆∥ and ∥s⋆∥.
Their norms are close to N , so we compute scaled norms
snorm_rstar = ∥r⋆∥/N and snorm_sstar = ∥s⋆∥/N .

def enumerate(r, s, B, N):
"""Given a lattice L spanned by the two vectors
(r, s), assumed to be the shortest, return the
list of all vectors of L with norm less than B.
It is assumed that r and s have norm about N,
and that B is close to N.
"""
short_vectors = []
# Compute volume
Vol2 = sqnorm(r) * sqnorm(s) - dot(r, s)**2
sVol = sqrt(fractions.Fraction(Vol2, N**4))
# Gram-Schmidt orthogonalization
mu = fractions.Fraction(dot(r, s), dot(r, r))
snorm_rstar = norm(scale(N, r))
snorm_sstar = sVol / snorm_rstar
# enumeration
sB = fractions.Fraction(B, N)
x2_max = floor(sB / snorm_sstar)
for x2 in range(-x2_max, x2_max + 1):

x1_max = floor(sB / snorm_rstar - mu*x2)
x1_min = ceil(-sB / snorm_rstar - mu*x2)
for x1 in range(x1_min, x1_max + 1):

w = aupbv(x1, r, x2, s)
if sqnorm(w) <= B * B:

short_vectors.append(w)
return short_vectors

Armed with this procedure, we can efficiently enumerate
the solutions of the linear program (2). For this, we enumer-
ate all vectors of norm less than B =

√
3 · 2ℓ in the lattice.

However, computing B is annoying because the square root
returns a floating-point value and 2ℓ is too large. So we just
overshoot by using B = 2ℓ+1, which is a little larger. Note
that we provide 2ℓ as the scaling factor to the enumeration
function. We recover vector of the form given by (3), so we
have to remove the 2ℓ−k multiplicative factor in the last two
components.

def linear_program(aprime, nprime, l, k):
"""
Return the set of all (gamma, delta) such that
|gamma * aprime + delta * nprime| <= 2**l
|gamma| <= 2**k
|delta| <= 2**k
"""
u = [aprime, 2**(l - k), 0]
v = [nprime, 0, 2**(l - k)]
r, s = lagrange_reduction(u, v)
B = 2**(l+1)
solutions = []
short_vectors = enumerate(r, s, B, 2**l)
for (a, g, d) in short_vectors:

g = g // 2**(l - k)
d = d // 2**(l - k)
if abs(a) <= 2**l and abs(g) <= 2**k and \

abs(d) <= 2**k:
solutions.append([g, d])

return solutions

And we can finally reconstruct the secrets of the client.
In order to avoid returning (n, a) or (−a,−n), we filter out
the extraneous outputs. As was shown above, this function
provably outputs the secrets.

def break_protocol(aprime, nprime, l, k):
"""
Given the server input (a', n'), produce the

secrets of the client (a, n).
"""
Omega = linear_program(aprime, nprime, l, k)
secrets = []
for (t, mz) in Omega:

for (my, x) in Omega:
if abs(t * x - my * mz) != 1:

continue
a = t * aprime + mz * nprime
n = my * aprime + x * nprime
if 0 < a < n:

secrets.append([a, n])
return secrets

With RSA-sized parameters (ℓ = 2048, k = 128), this
functions runs in 25ms on a recent laptop.

7 CONCLUSION

The modular inversion outsourcing protocol described in [3]
is completely insecure. In addition, it does not offer the
expected performance gains.
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Fig. 5. One step of the Lagrange algorithm.

APPENDIX A
LATTICE BASIS REDUCTION IN DIMENSION TWO

In this section, we prove the correctness and complexity
of Lagrange’s reduction algorithm. This proves theorem 3
above. This material is well-known but is rarely presented in
its entirety, and with all the details. It can be found scattered
across several textbooks [13], [14], [15] and publications [16].
It is assembled here to make the article as self-contained as
possible.

Figure 5 illustrates the intuition behind Lagrange’s re-
duction algorithm: at the beginning of each iteration, except
maybe the first one, u is shorter than v. At each step, the
algorithm tries to reduce the norm of v as much as possible,
by adding to it a well-chosen multiple of u. The norm of
v − qu is minimal when q is chosen such that qu is as
close as possible to v. The optimal value of q is therefore
q = u · v / ∥u∥2, which corresponds to the orthogonal
projection of v along Ru. However, q is not necessarily an
integer. Therefore, the best we can do is using the closest
possible integer multiple of u (shown in red in the figure) by
rounding q to the nearest integer.

Lagrange’s algorithm returns another basis of the lattice
spanned by its input vectors (u,v). This is easily seen by
induction: at each iteration, we have(

u′

v′

)
=

(
−q 1
1 0

)(
u
v

)
,

and the transformation matrix is unimodular.
The algorithm shown in fig. 2 does not have quadratic

complexity. However, the slightly more involved version
shown in fig. 6 does, and turns out to be easier to study. It
explicitly maintains the Gram matrix G of the current basis.
In other terms, at the beginning of each iteration of the loop
we have

G11 = ∥u∥2

G12 = u · v
G22 = ∥u∥2

1: function LAGRANGEREDUCE(u,v)
2: G11 ← ∥u∥2 ▷ Setup Gram matrix
3: G12 ← u · v
4: G22 ← ∥v∥2
5: repeat
6: q ← ⌊G12/G11⌉ ▷ equivalent to u · v / ∥u∥2
7: y ← G12 − qG11

8: w← v − qu
9: v← u

10: u← w
11: Swap G11 and G22 ▷ Update Gram matrix
12: G11 ← G11 − q(y +G12)
13: G12 ← y
14: until G11 ≥ G22 ▷ equivalent to ∥u∥ ≥ ∥v∥
15: return(v,u)

Fig. 6. Lagrange’s lattice reduction algorithm, quadratic version.

This is true on the first iteration because of the setup on
lines 2–4, and it remains true thanks to the maintenance in
lines 11– 13 (checking this is left to the reader).

Lemma 1. The algorithm returns a “Lagrange-reduced” basis
(r, s), which means that the following properties are satisfied:
i) ∥r∥ ≤ ∥s∥,
ii) |r · s| ≤ ∥r∥2/2.

Proof. That the first condition holds on termination follows
from the fact that the loop stops, and the fact that comparing
G11 and G22 is equivalent to comparing ∥u∥ and ∥v∥. To
establish that ii) holds as well, we first observe that it is
equivalent to saying that |G12| ≤ G22/2 at the end of the
last iteration. We claim that this in fact holds at the end
of all iterations. Indeed, the new value installed in G12 (by
line 13) is G12 − ⌊G12/G22⌉G22. Without the rounding, this
would be equal to zero, and because of the rounding this
value is less than G22/2 in absolute value.

The following lemma shows that the algorithm opti-
mally shortens v in each iteration.

Lemma 2. For any two vectors u and v, we have

|u · v| ≤ ∥u∥2/2⇐⇒ ∀k ∈ Z. ∥v∥ ≤ ∥v + ku∥.

Proof. For the forward direction, we have:

∥v∥ ≤ ∥v + ku∥2 = ∥v∥2 + 2ku · v + k2∥u∥2

≥ ∥v∥2 − |2ku · v|+ k2∥u∥2

≥ ∥v∥2 + (k2 − |k|)∥u∥2

The quantity (k2 − |k|) is always positive for integral val-
ues of k; this proves forward implication. For the reverse
implication, first set k = 1:

∥v∥ ≤ ∥v + u∥
∥v∥2 ≤ ∥v∥2 + 2u · v + ∥u∥2

−1/2 ≤ u · v/∥u∥2.

Then set k = −1:

∥v∥2 ≤ ∥v∥2 − 2u · v + ∥u∥2

u · v/∥u∥2 ≤ 1/2
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Combining these inequalities shows that |u ·v|/∥u∥2 ≤ 1/2.

Lemma 3. If (r, s) is the basis returned by the algorithm, then r
(resp. s) is the shortest (resp. second shortest) vector of the lattice.

Proof. This follows from the fact that (r, s) is a Lagrange-
reduced basis. Because (r, s) is a lattice basis, any non-zero
lattice vector x can be written x = ar + bs (with a, b ∈ Z).
If b = 0, then ∥x∥ ≥ ∥r∥. Assume b ̸= 0, and write the
Euclidean division a = xb+ y with 0 ≤ y < b. Then

x = yr+ b(s+ xr)

Then, by the triangle inequality, by lemma 2, and because
y ≥ 0 and b− y ≥ 1, we find:

∥x∥ ≥ |b| · ∥s+ xr∥ − y∥r∥
≥ (|b| − y) · ∥s+ xr∥+ y(∥s+ xr∥ − ∥r∥)
≥ (|b| − y) · ∥s∥+ y(∥s∥ − ∥r∥)
≥ ∥s∥

Because ∥s∥ ≥ ∥r∥, this shows that x is longer than r in
all cases. r is therefore the shortest non-zero vector of the
lattice. Then, if x is not a multiple of r, meaning if b ̸= 0,
then it is longer than s. This shows that s is the second
shortest vector.

The following lemma shows that a Lagrange-reduced
basis has bounded orthogonality defect.

Lemma 4. If (r, s) is the basis returned by the algorithm and V
is the volume of the lattice, then

∥r∥ · ∥s∥ ≤
√
4/3 · V.

Proof. Write the Gram-Schmidt orthogonalization of the ba-
sis:

s = s⋆ + µr with µ =
r · s
∥r∥2

.

We know that |µ| ≤ 1/2 (the basis is Lagrange-reduced),
and because of this

∥s∥2 ≤ ∥s⋆∥2 + 1

4
∥r∥2 ≤ ∥s⋆∥2 + 1

4
∥s∥2

In other terms, ∥s∥ ≤
√
4/3∥s⋆∥. The lemma then follows

from (9).

Lemma 3 establishes the correctness of the algorithm un-
der the (implicit) assumption that the algorithm terminates,
a fact that we now establish.

Lemma 5. |q| ≥ 2 in all iterations of the loop, except potentially
the first and the last one.

Proof. Because of the loop exit condition, we know that
∥u∥ ≤ ∥v∥ at the beginning of all iterations except poten-
tially the first one. Consider the value of q computed in
line 6.

If q = 0, then the iteration just swaps u and v. After the
first iteration, this triggers the loop exit condition, so it can
only happen in the last iteration.

If |q| = 1, we distinguish two cases:
1) Either ∥v − qu∥ ≥ ∥u∥. This also triggers the loop

exit condition, and thus can only happen in the last
iteration.

2) Or ∥v−qu∥ < ∥u∥. We claim that this can only happen
during the first iteration. Indeed, if this is not the first
iteration, the reasoning in the proof of lemma 1 shows
that |u · v| ≤ ∥u∥2/2 holds at the end of the previous
iteration, and thus at the beginning of the current one.
But then lemma 2 tells us that ∥v− qu∥ ≥ ∥v∥. Because
q = ±1, multiplying by q yields

∥u− qv∥ ≥ ∥v∥ ≥ ∥u∥.

Lemma 6. Each iteration (except possibly the first and last one)
decreases the norm of v by a multiplicative factor at least

√
3.

Proof. In these iterations, we know that |q| ≥ 2 thanks
to lemma 5. The statement of the lemma is equivalent to
∥v∥2 > 3∥v − qu∥2.

Write the Gram-Schmidt orthogonalization: v = u·v
∥u∥2u+

v⋆, where v⋆ and u are orthogonal. Because |q| ≥ 2, we
necessarily have |u · v| / u∥2 ≥ 3/2. It follows that

∥v∥2 ≥ (3/2)2∥u∥2 + ∥v⋆∥.

Then, because

v − qu =

(
u · v
∥u∥2

−
⌊
u · v
∥u∥2

⌉)
u+ v⋆

We find that

∥v − qu∥2 ≤ 1

4
∥u∥2 + ∥v⋆∥2

It follows that

∥v∥2 ≥ 2∥u∥2 + ∥v − qu∥2.

If this is not the last iteration, then ∥v− qu∥ ≥ ∥u∥, and the
proof is complete.

Lemma 6 shows that in each iteration except possibly
the first and last ones, the products of the norms of u and v
decreases by a multiplicative factor at least

√
3. Let τ denote

the total number of iterations and n denote the total bit size
of both u and v. It follows from lemma 6 that τ = O (n).
This is sufficient to prove that the complexity of the simple
version shown in figure 2 is O

(
n3
)
, because all operations

have integer operands of less than n bits and each iteration
costs O

(
n2
)
.

To conclude the proof of theorem 3, it remains to show
that the total number of operations of the more efficient
version shown in figure 6 is quadratic in the bit size of the
input basis.

Computing G11, G12 and G22 in the setup phase re-
quires a constant number of arithmetic operations on n-
bit integers. The setup phase thus requires less than O

(
n2
)

operations.

Lemma 7. The number of elementary operations performed by a
single iteration of the loop is upper-bounded by

λ(4µ+ 2 + 10n)(µ+ 2 + log ∥v∥ − log ∥u∥)

(u and v are the values at the beginning of the iteration).

Proof. During the whole execution of the algorithm, the
entries of u and v require n bits or less, but never more: they
are bounded by the norms, and the norms only decrease.
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G11 and G12 require at most 2n bits, and the Cauchy-
Schwartz inequality states that

|u · v| ≤ ∥u∥ · ∥v∥,

which implies that G12 occupies at most 2n bits. In addition,
this shows that |q| ≤ 1/2 + ∥v∥ / ∥u∥, where the 1/2 term
comes from the rounding. It follows that

log |q| ≤ 1 + log ∥v∥ − log ∥u∥.

Computing (q, y) requires less than λ(µ + log |q|)(µ + 2n)
operations. The two multiplications needed to compute w
require less than 2λ(µ+log |q|)(µ+n) operations. Note that
the entries of qu are smaller than 2∥v∥, and the two final
subtractions require less than 2λ(µ+ 1 + 2n) operations.

The other non-trivial part of the algorithm is the update
of G11 on line 12. Both y and G12 require less than 2n bits,
so adding them requires less than λ(µ+4n) operations. The
multiplication with q requires less than λ(µ + log |q|)(µ +
1 + 2n) operations. Finally, the last subtraction operates on
numbers smaller than n-bits, so it costs λ(µ+2n) operations.

Adding everything results in the bound given in the
lemma.

Let ui,vi denote the value of u and v at the beginning
of the i-th iteration. Then vi+1 = ui. The total cost of all
iterations of the algorithm is upper-bounded by

λ(4µ+ 2 + 10n)
τ∑

i=1

µ+ 2 + log ∥vi∥ − log ∥vi+1∥

This telescoping sum simplifies. We obtain an upper bound
on the total number of operations of all iterations

λ(4µ+ 2 + 10n)((τ − 1)(µ+ 2) + n)

Which is quadratic in n, because τ = O (n). Theorem 3 is
then finally proved.


